K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

a);b);c) Dùng máy tính (cụ thể là solve) bấm nghiệm rồi phân tích

d)Nhóm số T1;T2;T4 lại vs nhau

e)Biến đổi thành x2-2xy+y2-9y2

14 tháng 8 2018

a)   \(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)

b)  \(4x^2-4x-3=4x^2+2x-6x-3=2x\left(2x+1\right)-3\left(2x+1\right)=\left(2x+1\right)\left(2x+3\right)\)

c)  \(4x^4+81=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x-9\right)\)

d)  \(x^2-6xy-25+9y^2=\left(x-3y\right)^2-25=\left(x-3y-5\right)\left(x-3y+5\right)\)

e)  \(x^2-8y^2-2xy=x^2+2xy-4xy-8y^2=x\left(x+2y\right)-4y\left(x+2y\right)=\left(x+2y\right)\left(x-4y\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

a) 3x2 - 7x + 2

= 3x2 - 6x - x + 2

= (3x2 - 6x) - (x - 2)

= 3x (x - 2) - (x - 2)

= (3x - 1) (x - 2)

1 tháng 11 2016

a) (x^2+x)^2-14(x^2+x)+24

=(x^2+x)^2-2(x^2+x)-12(x^2+x)24

=(x^2+x)(x^2+x-2)-12(x^2+x-2)

=(x^2+x-12)(x^2+x-2)

1 tháng 11 2016

b)x^2-y^2+4-4x

=(x^2-4x+4)-y^2

=(x-2)^2-y^2

=(x-2+y)(x-2-y)

27 tháng 10 2017

a) \(=2xy^2\left(x^2+8x+15\right)\)

\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)

\(=2xy^2\left[\left(x+4\right)^2-1\right]\)

\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)

\(=2xy^2\left(x+5\right)\left(x-3\right)\)

mấy câu sau tự làm nha :*

29 tháng 10 2017

b,=(x^2-10x+25)-4

  =(x-5)^2-2^2

  =(x-5-2)(x-5+2)

  =(x-7)(x-3)