Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+9x+20\)
\(=x^2+4x+5x+20\)
\(=x\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(x+5\right)\)
b) Ta có: \(x^2+x-12\)
\(=x^2+4x-3x-12\)
\(=x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
c) Ta có: \(6x^2-11x-16\)
\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)
\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)
\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)
\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)
d) Ta có: \(4x^2-8x-5\)
\(=4x^2-10x+2x-5\)
\(=2x\left(2x-5\right)+\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+1\right)\)
e) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)
\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
g) Ta có: \(x^3+9x^2+23x+15\)
\(=x^3+x^2+8x^2+8x+15x+15\)
\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+8x+15\right)\)
\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)
\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
h) Ta có: \(2x^4-x^3-9x^2+13x\)
\(=x\left(2x^3-x^2-9x+13\right)\)
i) Ta có: \(x^4+2x^3-16x^2-2x+15\)
\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)
\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)
\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)
\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)
\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)
b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c, \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)
\(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)
= \(\left(x^2+x-2\right)\left(x+2\right)\)
a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)
\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)
\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b,c có ng lm rồi
d)\(2x^4-3x^3-7x^2+6x+8\)
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)
\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
phần còn lại bạn tự lo nhé
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
a)\(x^2+9x+20\)
\(\Leftrightarrow x^2+4x+5x+20\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x+4\right)\)
b)\(x^2+x-12\)
\(\Leftrightarrow x-3x+4x-12\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\)
Vừa vừa phải phải thôi người ta mất công gửi lên còn chửi người ta đó điên mất lịch sự
A . 5(x-y)-y(x-y)
=(x6-y)(5-y)
B . x^2 - xy - 8x+8y
=(x^2-xy)-(8x-8y))
=x(x-y) - 8(x-y)
C. x^2-10x+25 - y^2
=(x^2 - 10x + 25 ) - y^2
=(x-5)^2 - y^2
=(x-5+y)(x-5-y)
D . x^3 - 3x^2-4x+12
=(x^3 - 3x^2 ) - (4x - 12)
=x^2 (x-3)-4(x-3)
=(x^2-4)(x-3)
=(x+2)(x-2)(x-3)
D . 2x^2-2y^2- 6x-6y
=(2^x - 2y^2) - (6x+ 6y)
=2(x^2 - y^2) - 6(x+y)
=2(x+y)(x-y) - 6(x+y)
=2(x+y)(x-y-3)
E . x^3 - 3x^2 + 3x - 1
=(x-1)^3
D.x^2+3x+2
=x^2+2x+x+2
=(x^2+2x)+(x+2)
=x(x+2)+(x+2)
=(x+2)(x+1)
b) 6x - 9 - x2
= - (x2 - 6x + 9 )
= - ( x2 - 2.x.3 + 32 )
= - ( x - 3 )2
c) x2 - 16
= x2 - 42
= ( x - 4 )( x + 4)
d) 9x2 - 25
= ( 3x )2 - 52
= ( 3x - 5 )( 3x + 5 )
e ) x4 - y4
= ( x2)2 - ( y2 )2
= ( x2 - y2 )( x2 + y2 )
f) x6 -y6
= ( x3 )2 - ( y3)2
=( x3 - y3 )( x3 + y3 )
g) 8x3 - \(\dfrac{1}{27}\)
= ( 2x )3 - ( \(\dfrac{1}{3}\))3
= ( 2x - \(\dfrac{1}{3}\) ) ( 2x + \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))