Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(g\left(x,y\right)=x^2-10xy+9y^2=x^2-xy-9xy+9y^2\)
\(=x\left(x-y\right)-9y\left(x-y\right)=\left(x-y\right)\left(x-9y\right)\).
b )\(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)
\(=x^6-y^6+x^4+x^2y^2+y^4\)
\(=\left(x^3\right)^2-\left(y^3\right)^2+\left(x^4+2x^2y^2+y^4\right)-x^2y^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
\(=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left[\left(x-y\right)\left(x+y\right)+1\right]\)
\(=\left(x^2+xy+y^2\right)\left(x^2-2y+y^2\right)\left(x^2-y^2+1\right)\)
Vậy \(f\left(x,y\right)=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left(x^2-y^2+1\right)\)
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
b) \(x^2+y^2+2xy+yz+xz\)
\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
c) \(x^2-10xy-1+25y^2\)
\(=\left(x^2-10xy+25y^2\right)-1\)
\(=\left(x-5y\right)^2-1\)
\(=\left(x-5y-1\right)\left(x-5y+1\right)\)
d) \(ax^2-ax+bx^2-bx+a+b\)
\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)
\(=x^2(a+b)-x(a+b)+(a+b)\)
\(=(a+b)(x^2-x+1)\)
e)\(x^2-2y+3xz+x-2y+3z\)
\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)
\(=x(x+1)-2y(x-1)+3z(x+1)\)
\(=(x+1)(x-2y+3z)\)
f) \(xyz-xy-yz-xz+x+y+z-1\)
\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)
\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)
\(=(z-1)(xy-y-x+1)\)
\(=(z-1)[y(x-1)-(x-1)]\)
\(=(z-1)(x-1)(y-1)\)
_Học tốt_
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
chưa học ^^
a) x^2-10xy+9y^2
=x^2-9xy-xy+9y^2
=x(x-y)-9y(x-y)
=(x-9y)(x-y)