\(3x^2-8x+4\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

a) (x-1)(2x+5)

b) (x+1)(x-5)

c) [(x+1)^2](x^2+x+1)

d) (x-1)(x^3-x-1)

e) (x+y)(x-y-1)

24 tháng 7 2020

a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)

b) x2 - 4x  - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) =  (x + 1)(x - 5)

c) x4 + x3  + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)

d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)

e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)

14 tháng 10 2016

toán lớp 8 mà bạn sao lại lớp 7

17 tháng 10 2016

mình nhâm hàng :v 

24 tháng 7 2020

Bài làm:

a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(2x+5\right)\left(x+1\right)\)

b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)

c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

24 tháng 7 2020

2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )

x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

28 tháng 4 2018

Bài 1:

a: cho -6x+5=0

⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)

vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)

b: cho x2-2x=0 ⇔ x(x-2)

⇒ x=0 / x-2=0 ⇒ x=0/2

Vậy nghiệm của đa thức là :0 hoặc 2

d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)

\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức là 1 hoặc 3

f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0

\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)

Xin lỗi mình không có thời gian làm hếtbucminh

29 tháng 4 2018

cảm ơn bạn nha

Dạng 1: 

a: =>x(x-3)=0

=>x=3 hoặc x=0

b: =>x(3x-4)=0

=>x=4/3 hoặc x=0

c: =>2x-1=0

=>x=1/2

d: =>2x(2x+3)=0

=>x=0 hoặc x=-3/2

e: =>x(2x+5)=0

=>x=-5/2 hoặc x=0

20 tháng 4 2018

Ta có :

\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)

\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)

\(f\left(x\right)=x^2+1\)

Lại có :

\(x^2\ge0\)

\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)

Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )

Chúc bạn học tốt ~

20 tháng 4 2018

Cám ơn bn^^

20 tháng 4 2018

*thu gọn đa thức f(x)

f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4

     =4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1

     =x2+ 1

Chứng tỏ f(x) không có nghiệm

f(x)= x2+ 1

Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)

          1 > 0

nên x2+ 1 > 0

mà x+ 1 = 0 ( vô lí)

=> f(x) vô nghiệm

20 tháng 4 2018

Ta có : 

\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)

\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)

\(f\left(x\right)=x^2+1\)

Lại có : 

\(x^2\ge0\)

\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)

Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 ) 

Chúc bạn học tốt ~