K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

b) x3 – x2 – 5x + 125

= (x3 + 125) - (x2 + 5x)

= (x + 5)(x2 - 5x + 25) - x(x + 5)

= (x + 5)(x2 - 5x + 25 - x)

= (x + 5)(x2 - 6x + 25)

21 tháng 7 2018

c/ Ta có:

\(x^2-3xy+x-3y\)

\(=x^2+x-3xy-3y\)

\(=x\left(x+1\right)-3y\left(x+1\right)\)

\(=\left(x+1\right)\left(x-3y\right)\)

d/ Ta có:

\(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

21 tháng 7 2018

\(x^2-3xy+x-3y\)

\(=x\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x+1\right)\left(x-3y\right)\)

\(x^3-x^2-5x+125\) k có nghiệm

6 tháng 10 2018

=(x3+53)-(x2+5x)

=(x+5)(x2-5x+25)-x(x+5)

=(x+5)(x2-5x+25-x)

=(x+5)(x2-6x+25)

23 tháng 8 2020

Làm cách khác :D

x3 - x2 - 5x + 125

Thử với x = -5 ta được :

(-5)3 - (-5)2 - 5.(-5) + 125 = 0

Vậy -5 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho ( x + 5 )

Thực hiện phép chia x3 - x2 - 5x + 125 cho ( x + 5 ) ta được x2 - 6x + 25

Vậy x3 - x2 - 5x + 125 = ( x + 5 )( x2 - 6x + 25 )

Bài làm

a) x2 - 2xy + y2 - zx + yz

= ( x2 - 2xy + y2 ) - ( zx - yz )

= ( x - y )2 - z( x - y )

= ( x - y )( x - y - z )

b) x3 - x2 - 5x + 125

= ( x3 + 125 ) - ( x2 + 5x )

= ( x + 5 )( x2 -.5x + 25 ) - x( x + 5 )

= ( x + 5 )( x2 - 5x + 25 - x )

= ( x + 5 )( x2 - 6x + 25 )

# Học tốt #

câu a nhầm đề à bạn,mk nghĩ -xz chứ ko phải -xy.

14 tháng 8 2016

a,3x-6y

=3(x-2y)

b,=x^2(2/5+5x+y)

k đúng cho mk nhé bạn

26 tháng 7 2018

b/ (x + 1)(x + 5)

c/ (x - 5)(x - 2)

26 tháng 7 2018

\(b,x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)

\(c,x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)

2 tháng 6 2018

\(x^5+x^4-x^3+x^2-x+2\)

\(=x^5-x^4+x^3-x^2+x+2x^4-2x^3+2x^2-2x+2\)

\(=x\left(x^4-x^3+x^2-x+1\right)+2\left(x^4-x^3+x^2-x+1\right)\)

\(=\left(x+2\right)\left(x^4-x^3+x^2-x+1\right)\)

26 tháng 7 2018

Dùng hằng đẳng thức là xong

a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

b,  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

26 tháng 7 2018

f) \(x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

g) \(x^4+64=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)

26 tháng 7 2018

\(x^2-6x+5\)

\(=\left(x^2-2.3x+3^2\right)-4\)

\(=\left(x-3\right)^2-2^2\)

\(=\left(x-3-2\right)\left(x-3+2\right)\)

\(=\left(x-5\right)\left(x-1\right)\)

5 tháng 10 2020

a) 16x2 - ( x2 + 4 )2

= ( 4x )2 - ( x2 + 4 )2

= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]

= ( -x2 + 4x - 4 )( x2 + 4x + 4 )

= [ -( x2 - 4x + 4 ) ]( x + 2 )2

= [ -( x - 2 )2 ]( x + 2 )2

b) ( x + y )3 + ( x - y )3

= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]

= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]

= 2x( 2x2 + 2y2 - x2 + y2

= 2x( x2 + 3y2 )

12 tháng 8 2018

\(C=x^3+5x^2+8x+4\)

   \(=x^3+x^2+4x^2+4x+4x+4\)

   \(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

   \(=\left(x^2+4x+4\right)\left(x+1\right)\)

   \(=\left(x+2\right)^2.\left(x+1\right)\)

\(D=x^3-x^2-4\)

    \(=x^3-2x^2+x^2-2x+2x-4\)

    \(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)

    \(=\left(x^2+x+2\right)\left(x-2\right)\)

Chúc bạn học tốt.