\(x^2-4+\left(x-2\right)^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

a) x2 – 4 + (x – 2)2

= (x2 – 22) + (x – 2)2 = (x – 2)(x + 2) + (x – 2)2

= (x – 2) [(x + 2) + (x – 2)]

= (x – 2)(x + 2 + x – 2)

= 2x(x – 2)

b) x3 – 2x2 + x – xy2

= x(x2 – 2x + 1 – y2) = x[(x2 – 2x + 1) – y2]

= x[(x – 1)2 – y2]

= x[(x – 1) + y] [(x – 1) – y]

= x(x – 1 + y)(x – 1 – y)

c) x3 – 4x2 – 12x + 27

= (x3 + 27) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9 – 4x)

= (x + 3)(x2 – 7x + 9)

12 tháng 7 2017

câu a đặt chung x ra là xong
câu b 
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé

a) x3 - 2x2 + x - xy2

= x (x2 - 2x + 1 - y2)

= x [(x2 - 2x + 1) - y2]

= x [(x - 1)2 - y2]

= x [(x - 1) + y] [(x - 1) - y]

= x (x - 1 + y) (x - 1 - y)

b) x3 - 4x2 - 12x + 27

= (x3 + 27) - (4x2 + 12x)

= (x3 + 33) - 4x (x + 3)

= (x + 3) (x2 - 3x + 32) - 4x (x + 3)

= (x + 3) [(x2 - 3x + 9) - 4x]

= (x + 3) (x2 - 3x + 9 - 4x)

= (x + 3) (x2 - 7x + 9)

#Học tôt!!!

~NTTH~

26 tháng 7 2016

a) = (x3 +33) -4x(x+3)

   = (x+3)(x2 -3x+9-4x)

   = (x+3)(x2 - 7x +9)

26 tháng 7 2016

=(x+3)(x2-7x+9)

15 tháng 8 2016

 Với x = -3 ta có -27-4*9+ 36+27=0 do đó đa thức chứa nhân tử x+3 
Ta có: x^3 -4x^2-12x+27 = x^3 +3x^2 -7x^2-21x+9x+27 =(x^3 +3x^2)-(7x^2+21x) + (9x+27) =x^2(x+3) -7x(x+3)+ 9(x+3)=(x+3)(X^2 - 7x+9) 
* Xét x^2 -7x + 9 = x^2 - 2x.7/2 +49/4-49/4+9 = (x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2) 
Vậy: x^3 -4x^2-12x+27 = (x+3)(x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2)

k cho mình nha

15 tháng 8 2016

 = (x+2)(x-2) +(x-2)2 = (x-2)(x+2 +x-2) = 2x(x-2)

3 tháng 8 2020

a,(x-y)^2-2(x+y)+1   b, x^2-y^2+4x+4         c, 4x^2-y^2+8(y-2)

=(x-y-1)^2                  =(x^2+4x+4)-y^2        =4x^2-y^2+8y-16

                                  =(x+2)^2-y^2              =4x^2-(y^2-8y+16)

                                  =(x+2-y)(x+2+y)         =4x^2-(y-4)^2

                                                                        

3 tháng 8 2020

a) (x+y)2-2(x+y)+1=(x+y-1)2

b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)

c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)

d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)

e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3 = 4x2(3x + 1) + 3(3x + 1) = (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2 = x2(x + 2) - (x + 2) = (x2 - 1(x + 2) = (x - 1)(x + 1)(x + 2)

c) a3 + (a - b)3 = (a + a - b)[a2 - a(a - b) + (a - b)2] = (2a - b)(a2 - a2 + ab +  a2 - 2ab + b2)

= (2a - b)(a2 - ab + b2)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3

= 4x2(3x + 1) + 3(3x + 1)

= (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2

= x2(x + 2) - (x + 2)

= (x2 - 1)(x + 2)

c) a3 + (a - b)3 

= a3 - a2(a - b) + a(a - b)2 + (a - b)a2 - (a - b)2a + (a - b)3

= a[(a2 - a(a - b) + (a - b)2] + (a - b)[a2 - a(a - b) + (a - b)2]

= (a + a - b)[(a2 - a(a - b) + (a - b)2]

11 tháng 7 2016

a)2(x-3)+12-4x

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

=(x2-22)(x-3)

=(x+2)(x-2)(x-3)

b)x3-4x2-12x+27

=x3-7x2+9x+3x2-21x+27

=x(x2-7x+9)+3(x2-7x+9)

=(x+3)(x2-7x+9)

11 tháng 7 2016

a)\(x^2\left(x-3\right)+12-4x\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-2^2\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)