Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
b) sửa đề nhé!
\(6x-9-x^2=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
Ta có:
a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)
b) 2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2
= (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)
c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)
d) 4x2 - 20x + 25 - 36y2 = (2x - 5)2 - (6y)2 = (2x - 5 - 6y)(2x - 5 + 6y)
e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)
g) Ta có : x10 + x5 + 1
= (x10 - x) + (x5 - x2) + (x2 + x + 1)
= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)
= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)
= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)
h) TT trên (dài dòng ktl)
a. 6x3y2 ( 2-x) + 9x2y2 (x-2)
= -6x3y2 (x-2) + 9x2y2 ( x-2)
= (x-2) 3x2y2 ( -2x + 3)
b. x2 - 4x + 4y - y2
= x2 - y2 - (4x - 4y )
= (x-y)(x+y) - 4( x-y)
= (x-y)(x+y-4)
c. 81x2 + 6yz -9y2-z2
= 81x2 - (9y2 - 6yz + z2 )
= (9x)2 - ( 3y - z )2
= (9x + 3y -z)(9x - 3y + z )
\(a,=6x^3y^2\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=\left(2-x\right)\left(6x^3y^2-9x^2y^2\right)=\left(2-x\right)3x^2y^2\left(2x-3\right)\)
\(f,=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5\left(2x-1\right)\)
\(g,=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x-3+2\right)\)
\(=\left(x+3\right)\left(x-1\right)\)
a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)
b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)
=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)
=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)
=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
a) xy – 3x + 2y – 6
= (xy - 3x) + (2y - 6)
= x(y - 3) + 2(y - 3)
= (y - 3)(x + 2)
b) x2y + 4xy + 4y – y3
= y(x2 + 4x + 4 - y2)
= y[(x2 + 4x + 4) - y2]
= y[(x + 2)2 - y2]
= y(x + 2 + y)(x + 2 - y)
c) x2 + y2 + xz + yz + 2xy
= (x2 + 2xy + y2) + (xz + yz)
= (x + y)2 + z(x + y)
= (x + y)(x + y + z)
d) x3 + 3x2 – 3x – 1
= (x3 - 1) + (3x2 - 3x)
= (x - 1)(x2 + x + z) + 3x(x - 1)
= (x - 1)(x2 + 4x + 1)
a )
\(xy-3x+2y-6\)
\(=\left(xy+2y\right)-3x-6\)
\(=y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(y-3\right)\left(x+2\right)\)
b )
\(x^2y+4xy+4y-y^3\)
\(=y\left(x^2+4x+4-y^2\right)\)
\(=y\left[\left(x+2\right)^2-y^2\right]\)
\(=y\left(x+2-y\right)\left(x+2+y\right)\)
c )
\(x^2+y^2+xz+yz+2xy\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
a) \(5ax-15ay+20a\)
\(=5a\left(x-3y+4\right)\)
b) \(6xy-12x-8y\)
\(=6\left(xy-2x-3y\right)\)
c) \(3ab\left(x-y\right)+3a\left(y-x\right)\)
\(=3a\left(x-y\right)\left(b-1\right)\)
d) \(x^2-xy+2x-2y\)
\(=\left(x+2\right)\left(x-y\right)\)
e) \(ax^2-5x^2-ax+5x+a-5\)
\(=\left(a-5\right)\left(x^2-x+1\right)\)
a.\(4xy-8x^3y=4xy\left(1-2x^2\right)\)
b.\(5\left(x^2-y^2\right)+16\left(x-y\right)=\left(x-y\right)\left[5\left(x+y\right)+16\right]\)
c.\(x^3-4x^2y+4xy^3=x\left(x-2y\right)^2\)
d.\(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
e.\(x^2y-2x^2+4y-8=\left(y-2\right)\left(x^2+4\right)\)
g. \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)