K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

phân tích các đa thức sau thành nhân tử
a) 4x^2 - 4xy + 4y^2

\(=\) \(\left(2x\right)^2-4xy+\left(2y\right)^2\)

\(=\left(2x-2y\right)^2\)

b) x^2 - 4xy +4y^2

\(=x^2-4xy+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)
c) x^2 + 10x + 25

\(=x^2+2.x.5+5^2\)

\(=\left(x+5\right)^2\)
d)x^2 - 10x + 25

\(=x^2-2.x.5+5^2\)

\(=\left(x-5\right)^2\)
e) 81 - (x+1)^2

\(=9^2-\left(x+1\right)^2\)

\(=\left(9-x-1\right)\left(9+x+1\right)\)
f) 16x^2 - 64 (y + 1)^2

\(=16x^2-8^2\left(y+1\right)^2\)

\(=16x^2-\left(8y+8\right)^2\)

\(=\left(16-8y-8\right)\left(16+8y+8\right)\)

p/s: ko chắc câu cuối đâu :v

28 tháng 6 2017

ý a sai r` kìa, ý f thì x đâu mất r`?_?

11 tháng 10 2019

a) \(4x^2-4xy+y^2-9\)

\(=\left(2x-y\right)^2-3^2\)

\(=\left(2x-y+3\right)\left(2x-y-3\right)\)

b) \(x^2-36+4xy+4y^2\)

\(=\left(4y^2+4xy+x^2\right)-36\)

\(=\left(2y+x\right)^2-6^2\)

\(=\left(2y+x+6\right)\left(2y+x-6\right)\)

c) \(9x^2-12xy-25+4y^2\)

\(=\left(9x^2-12xy+4y^2\right)-25\)

\(=\left(3x-2y\right)^2-5^2\)

\(=\left(3x-2y+5\right)\left(3x-2y-5\right)\)

d) \(25x^2+10x-4y^2+1\)

\(=\left(25x^2+10x+1\right)-4y^2\)

\(=\left(5x+1\right)^2-\left(2y\right)^2\)

\(=\left(5x+2y+1\right)\left(5x-2y+1\right)\)

28 tháng 6 2017

a) x^2 + 2x + 1

=\(x^2+2.x.1+1^2\)

\(=\left(x+1\right)^2\)
b) x^2 + 6x + 9

=\(x^2+2.x.3+3^2\)

\(=\left(x+3\right)^2\)
c) x^2 - 6x + 9

\(=x^2-2.x.3+3^2\)

=\(\left(x-3\right)^2\)
d) x^2 - 2x + 1

\(=x^2-2.x.1+1^2\)

\(=\left(x-1\right)^2\)
e ) 4x^2 + 4xy +y^2

\(=\left(2x\right)^2+2.2x.y+y^2\)

\(=\left(2x+y\right)^2\)
f) x^2 + 4xy + 4y^2

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

28 tháng 6 2017

phân tích các đa thức sau thành nhân tử
a) x^2 + 2x + 1

\(=\left(x+1\right)^2\)
b) x^2 + 6x + 9

\(=\left(x+3\right)^2\)
c) x^2 - 6x + 9

\(=\left(x-3\right)^2\)
d) x^2 - 2x + 1

\(=\left(x-1\right)^2\)
e ) 4x^2 + 4xy +y^2

\(=\left(2x\right)^2+4xy+y^2\)

\(=\left(2x+y\right)^2\)
f) x^2 + 4xy + 4y^2

\(=x^2+4xy+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

p/s: --.--

23 tháng 10 2016

a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-y-2\right)\left(x+y\right)\)

23 tháng 10 2016

b) xy+y2 = y ( x + y )

c) \(=\left(x^2+4xy+4y^2\right)-25\)

\(=\left(x+2y\right)^2-5^2\)

\(=\left(x+2y+5\right)\left(x+2y-5\right)\)

11 tháng 11 2018

a) \(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}}\)

b) \(5x\left(3x-2\right)=4-9x^2\)

\(5x\left(3x-2\right)-\left(4-9x^2\right)=0\)

\(5x\left(3x-2\right)-\left(2-3x\right)\left(2+3x\right)=0\)

\(5x\left(3x-2\right)+\left(3x-2\right)\left(2+3x\right)=0\)

\(\left(3x-2\right)\left(5x+3x+2\right)=0\)

\(\left(3x-2\right)\left(8x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\8x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{4}\end{cases}}}\)

c) \(x^2+7x=8\)

\(x^2+7x-8=0\)

\(x^2+8x-x-8=0\)

\(x\left(x+8\right)-\left(x+8\right)=0\)

\(\left(x+8\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+8=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}}\)

d) \(2x^2+4y^2+10x+4xy=-25\)

\(x^2+x^2+4y^2+10x+4xy+25=0\)

\(\left(4y^2+4xy+x^2\right)+\left(x^2+10x+25\right)=0\)

\(\left(2y+x\right)^2+\left(x+5\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2y+x=0\\x+5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{5}{2}\\x=-5\end{cases}}}\)

28 tháng 9 2016

1:

a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)

b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

2

\(-2x^2-4x+6=0\)

\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow x^2-x+3x-3=0\)

\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)

28 tháng 9 2016

1,

a) x( x2 + 2x +1) = x(x+1)2

b)25 - (x-2y)= (5-x+2y)(5+x-2y)

2,

(x-1)(x+3)=0

<=>x=1 hoặc x=-3

 

15 tháng 8 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2x.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.1.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) \(\frac{x^2}{4}+2xy+4y^2\)

\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)

\(=\left(\frac{x}{2}+2y\right)^2\)

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)

\(=-a^4b^4\left(4b+3a\right)^2\)

h) \(25x^2-20xy+4y^2\)

\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)

\(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2.5x^2y+y^2\)

\(=\left(5x^2-y\right)^2\)

30 tháng 7 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) Viết = công thức trực quan hộ mình

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)