Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x4+1
=(2x)2+1
=(2x+1)(2x-1)
b,c tách làm bình phương rồi làm tương tự
a) \(x^5-2x^4+3x^3-4x^2+2\)
\(=x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)
\(=x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^4-x^3+2x^2-2x-2\right)\)
b) \(x^4+1997x^2+1996x+1997\)
\(=\left(x^4+x^2+1\right)+1996\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
c) \(x^8+x^4+1\)
\(=x^8+2x^4+1-x^4\)
\(=\left(x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
c) \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Bài làm ai trên 11 điểm tích mình thì mình tích lại
Ông tùng hơn tùng số tuổi là :
29 + 32 = 61 (tuổi )
Vậy ông của tùng hơn tùng 61 tuổi
\(\left(a\right)x^8+98x^4+1\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(x^4-4x^3+8x^2+4x+1\right)\left(x^4+4x^3+8x^2+\left(-4\right)x+1\right)\)
\(\left(b\right)4x^4-32x^2+1\)
\(\text{ Phân tích thành nhân tử}\)
\(-\left(28x^2-1\right)\)
cái này phân tích thành nhân tử:
vì máy tính nên ko viết đc mũ
(x mũ 4-4xmũ 3+8x mũ 2+4x+1)vì vậy biểu thức ko thể rút gọn
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2x^2.1+1^2\right]-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=\left[\left(x^2\right)^2-2.10x^2+10^2\right]-\left(2x\right)^2\)
\(=\left(x^2-10\right)^2-\left(2x\right)^2\)
\(=\left(x^2-10-2x\right)\left(x^2-10+2x\right)\)
\(4x^4+81\)
\(=\left[\left(2x^2\right)^2+2.2x^2.9+9^2\right]-\left(6x\right)^2\)
\(=\left(2x^2+9\right)-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right).\left(2x^2+9+6x\right)\)
Tham khảo nhé~
a) \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^8+1\)
\(=\left(2x^4\right)^2+2\cdot2x^4\cdot1+1^2-2\cdot2x^4\cdot1\)
\(=\left(2x^4+1\right)-\left(2x^2\right)^2\)
\(=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
a/ \(x^4+4=\left(x^2\right)^2+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-4x+2\right)\left(x^2+4x+2\right)\)
b/ \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2+4x^4+1-4x^4=\left(2x^4+1\right)^2-4x^2=\left(2x^4-2x+1\right)\left(2x^4+2x+1\right)\)
Ấn nhầm :v
a) \(4x^4-21x^2y^2+y^4\)
\(=\left(2x^2\right)^2-2\cdot2x^2\cdot y^2+y^2-25x^2y^2\)
\(=\left(2x^2-y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2-5xy-y^2\right)\left(2x^2+5xy-y^2\right)\)
b) \(x^5-5x^3+4x\)
\(=x^5-4x^3-x^3+4x\)
\(=x^3\left(x^2-4\right)-x\left(x^2-4\right)\)
\(=\left(x^2-4\right)\left(x^3-x\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Bài giải:
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
a) \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^8+1\)
\(=\left(2x^4\right)^2+2\cdot2x^4\cdot1+1^2-2\cdot2x^4\cdot1\)
\(=\left(2x^4+1\right)^2-\left(2x^2\right)^2\)
\(=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
\(x^4+4\)
\(=\left(x^2\right)^2+2.x^2.2+2^2-2.x^2.2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)