Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ab(a+b)+bc(b+c)+ca(c+a)+2abc
= a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc
= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)
=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)
=b^2(a+c) + b(a+c)^2 + ca(c+a)
=(c+a)[b^2 + b(a+c) + ca]
=(c+a)[b^2 + ab + bc + ca]
=(c+a)[b(b+a) + c(b+a)]
=(c+a)(b+c)(b+a)
2/VP=-(x-4)
pt trở thành \(\sqrt[3]{16-x^3}=-\left(x-4\right)\)
<=>x=2
\(=a^3-3a^2+7a^2-21a-\left(8a-24\right)\)hay
\(=a^2\left(a-3\right)+8a\left(a-3\right)-8\left(a-3\right)\)
\(=\left(a-3\right)\left(a^2+8a-8\right)\)
CHÚC BẠN HỌC TỐT...
\(a^3+4a^2-29a+24\)
\(=\left(a^3-3a^2\right)+\left(7a^2-21a\right)+\left(-8a+24\right)\)
\(=\left(a-3\right)\left(a^2+7a-8\right)\)
\(=\left(a-3\right)\left[\left(a^2-a\right)+\left(8a-8\right)\right]\)
\(=\left(a-3\right)\left(a-1\right)\left(a+8\right)\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)
\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)
\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) Theo trên ta có
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)