\(3x^2-3y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

6xy + 5x − 5y − 3x2 − 3y2

=5(x−y)−(3x2−6xy+3y2)

=5(x−y)−3(x−y)2

=5(x−y)−(3x−3y)(x−y)

=(5−3x+3y)(x−y)

30 tháng 8 2019

thank nha

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

3 tháng 7 2017

a, \(\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

b, \(5x^3-5x^2y-10x^2+10xy\)

\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)

\(=\left(5x-10x\right)\left(x-y\right)=5x\left(x-2\right)\left(x-y\right)\)

c, \(2x^2-5x=x\left(2x-5\right)\)

f, \(3x^2-7x-10=3x^2+3x^2-10x-10\)

\(=3x^2\left(x+1\right)-10\left(x+1\right)=\left(3x^2-10\right)\left(x+1\right)\)

d, \(x^3-3x^2+1-3x=x^3-3x^2-3x+1\)

\(=x^3+x^2-4x^2-4x+x+1\)

\(=x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x^2-4x+1\right)\left(x+1\right)\)

e, \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g, \(x^4+1-2x^2=\left(x^2-1\right)^2\)

h, \(3x^2-3y^2-12x+12y=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y-12\right)\)

\(=3\left(x-y\right)\left(x+y-4\right)\)

j, \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

3 tháng 7 2017

a. \(\left(x^2-y^2\right)-5\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

b. \(5x^3-5x^2y-10x^2+10xy\)

\(=5\left[\left(x^3-x^2y\right)-\left(2x^2-2xy\right)\right]\)

\(=5\left[x^2\left(x-y\right)-2x\left(x-y\right)\right]\)

\(=5x\left(x-y\right)\left(x-2\right)\)

c. \(2x^2-5x=x\left(2x-5\right)\)

d. \(x^3-3x^2+1-3x\)

\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2-x+1-3x\right]\)

\(=\left(x+1\right)\left[x^2-4x+1\right]\)

\(=\left(x+1\right)\left[x^2-2.x.2+2^2-2^2+1\right]\)

\(=\left(x+1\right)\left[\left(x-2\right)^2-3\right]\)

\(=\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)

e. \(3x^2-6xy+3y^2-12z^2\)

\(=3\left[x^2-2xy+y^2-4z^2\right]\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y+2z\right)\left(x-y-2z\right)\)

f. \(3x^2-7x-10\)

\(=3x^2-7x-7-3\)

\(=\left(3x^2-3\right)-\left(7x+7\right)\)

\(=3\left(x^2-1\right)-7\left(x+1\right)\)

\(=3\left(x+1\right)\left(x-1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left[3\left(x-1\right)-7\right]\)

\(=\left(x+1\right)\left(3x-8\right)\)

g. \(x^4+1-2x^2=\left(x^2\right)^2-2.x^2+1=\left(x^2-1\right)^2\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

h. \(3x^2-3y^2-12x+12y\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left[3\left(x+y\right)-12\right]\)

\(=\left(x-y\right).3.\left(x+y-4\right)\)

j. \(x^2-3x+2=x^2-x-2x+2\)

\(=x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

P/s: ( Có j sai ns nha nhiều số quá tui rối đầu )

11 tháng 12 2018

a)\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)

b)\(3x^2+6xy+3y^2-3z^2=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

c)\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)

1 tháng 11 2017

a) \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x^2-9\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

b) \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g) \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

1 tháng 11 2017

a,\(x^3-4x^2-9x+36\)

\(=\left(x^3-4x^2\right)+\left(-9x+36\right)\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x^2-9\right)\left(x-4\right)\)

20 tháng 11 2017

\(1.5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

\(2.16x-5x^2-3\)

\(=-\left(5x^2-16x+3\right)\)

\(=-\left(5x^2-15x-x+3\right)\)

\(=-\left[\left(5x^2-15x\right)-\left(x-3\right)\right]\)

\(=-\left[5x\left(x-3\right)-\left(x-3\right)\right]\)

\(=-\left(x-3\right)\left(5x-1\right)\)

\(3.x^2-5x+5y-y^2\)

\(=\left(x^2-y^2\right)-\left(5x-5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

\(4.3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
\(5.x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=\left(x^2+3x\right)+\left(x+3\right)\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x+1\right)\)

\(6.\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)^2\)

\(7.x^2-4x-5\)

\(=x^2-5x+x-5\)

\(=\left(x^2-5x\right)-\left(x-5\right)\)

\(=x\left(x-5\right)-\left(x-5\right)\)

\(=\left(x-5\right)\left(x-1\right)\)

11 tháng 12 2018

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Tham khảo nhé~

6 tháng 1 2018

Ta có:

\(x^2-y^2-z^2=0\)

\(16x^2-16y^2-16z^2=0\)

\(25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)

\(\left(5x-3y\right)^2-16z^2= \left(3x-5y\right)^2\)

\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 1:

a)

\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)

\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)

\(\geq 2013\)

Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)

b)

\(B=2x^2+5y^2+4xy-6+5x-9\)

\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)

Vậy GTNN của $B$ là $\frac{-485}{24}$

Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)

c)

\(C=x^2+xy+y^2-3x-3y+2018\)

\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)

\(\geq \frac{8060}{4}=2015\)

Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)

\(=(x-1)^2+(2y+1)^2-7\geq -7\)

\(\Rightarrow A\leq 7\)

Vậy GTLN của $A$ là $7$.

Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)

b)

ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)

\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)

Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm

\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)

\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)

Vậy $B_{\max}=\frac{97}{22}$