![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
nếu trong biểu thức thì viết như này , còn trình bày thì anh kid đã làm rồi
a, \(đk:x>2\)
b, \(đk:x\ge0;x\ne9\)
a)
Các biểu thức sau có nghĩa khi \(\frac{1}{x^2-4}>0;x^2-4\ne0\Rightarrow x>2\)
b)
Biểu thức có nghĩa khi \(x\ge0;x\ne9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)
Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)
Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)
Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:
\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)
Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\sqrt{\frac{x-2}{x+3}}\)có nghĩa khi \(\frac{x-2}{x+3}\)\(\ge0\)
TH1: \(x-2\ge0\)và \(x+3\ge0\) TH2:\(x-2\le0\) và \(x+3\le0\)
\(\Leftrightarrow x\ge2\) \(\Leftrightarrow x\ge-3\) \(\Leftrightarrow x\le2\) \(\Leftrightarrow x\le-3\)
\(\Rightarrow x\ge2\) \(\Rightarrow x\le-3\)
Vậy vs \(x\ge2\)và\(x\le-3\)thì \(\sqrt{\frac{x-2}{x+3}}\)có nghĩa
b)Để \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa thì:
\(\Rightarrow\hept{\begin{cases}x^2\\-x-7\ge0\end{cases}-25\ne0}\) \(\Rightarrow\hept{\begin{cases}x\ne5\\x\le-7\end{cases}}\)
Vậy vs \(x\le-7\) và \(x\ne5\)thì \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa
![](https://rs.olm.vn/images/avt/0.png?1311)
Có nghĩa khi:
\(x\ne0;x+3\ne0;\frac{x-1}{x^2\left(x+3\right)}\ge0\)
\(\Leftrightarrow x\ne0;x\ne-3;\orbr{\begin{cases}x< -3\\x\ge1\end{cases}}\)
Phân thức có nghĩa khi\(\hept{\begin{cases}\sqrt{4-x}\ge0\\\sqrt{4-x}\ne0\end{cases}\Rightarrow\sqrt{4-x}>0}\)
\(\Leftrightarrow4-x>0\Rightarrow x< 4\)