K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\frac{n+1}{n+2}\)

\(\Rightarrow\)\(n+1⋮n+2\)

\(\Rightarrow\left(n+2\right)+-1⋮n+2\)

\(\Rightarrow-1⋮n+2\)

\(\Rightarrow n+2\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{-1;-3\right\}\)

15 tháng 4 2019

\(\frac{n+1}{n+2}\in Z\Rightarrow n+1⋮n+2\)

\(\Rightarrow n+2-1⋮n+2\Rightarrow-1⋮n+2\)

\(\Rightarrow n+2\in\left\{1,-1\right\}\)

\(\Rightarrow n\in\left\{-1,-3\right\}\)

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

22 tháng 1 2024

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)

4 tháng 5 2019

a) n ∈ Z và n ≠ –2

b) HS tự làm

c) n ∈ {-3;-1}

21 tháng 2 2015

Ta có : 3n+2 chia n-1 bằng 3 dư 5 .Để A là số nguyên thì n-1 phải là ước của 5 bao gồm : 1;-1;5;-5

n-1=1=>n=2

n-1=-1 =>n=0

n-1=5=>n=6

n-1=-5=>n=-4

Vậy n thuộc tập hợp bao gồm : -4;0;2;6

17 tháng 4 2016

vì sao dư 5

2 tháng 4 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1 = - 1 => n = 0
  • Nếu n - 1 = 1 => n = 2
  • Nếu n -1 = 5 => n = 6

Vậy n thuộc -4 ;0 ;2 ; 6

2 tháng 4 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1 = - 1 => n = 0
  • Nếu n - 1 = 1 => n = 2
  • Nếu n -1 = 5 => n = 6

Vậy n thuộc -4 ;0 ;2 ; 6