K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

ko ghi đề bài nha làm luôn

a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)

b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)

18 tháng 12 2018

a)ĐK: \(x\ne-y;x,y\ne0\)

\(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(2+5\right)}{\left(x+y\right)\left(2-5\right)}=-\frac{7}{3}\)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt

7 tháng 11 2017

1)

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)

d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)

e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)

f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)

\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)

2)

a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)

b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )

d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)

e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

1 tháng 12 2019

a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)

b)\(=\frac{3x\left(x+y\right)}{y}\)

c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

1 tháng 12 2019

a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)

b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)

c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)

d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)

h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)

j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

Câu b) bạn xem lại nhé.

Học tốt ^3^

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

15 tháng 6 2017

a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)

\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)

\(=-\left(5x+3\right)\)

b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)

\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)

\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)

\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)

\(=14x^2+14xy+15y^2\)

\(=14x.\left(x+y\right)+15y^2\)

Chúc bạn học tốt!!!

15 tháng 6 2017

a) \(2x^2+3.\left(x+1\right).\left(x-1\right)-5x\left(x+1\right)\)

= \(2x^2+3.\left(x^2-1\right)-5x.\left(x+1\right)\)

= \(2x^2+3x^2-3-5x^2-5x\)

= \(-5x-3\)

29 tháng 8 2018

mk viết đáp án, ko biết biến đổi ib mk

a)  \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)

b)    \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)   \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)   \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm