Phần II:Tự luận (7đ)

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần II:Tự luận (7đ)

Câu Phần II:Tự luận (7đ)

Câu 1:  a) Tính:                     

b) Cho biểu thức:  

*) Tìm điều kiện xác định và rút gọn biểu thức A. 

*) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt  

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2 

tiếp điểm), vẽ dây AC// OM.

a) Chứng minh OM   AB tại H và suy ra OH.OM = R2.

b) MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c) Vẽ AK BC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

1:  a) Tính:                   

b) Cho biểu thức:

          *) Tìm điều kiện xác định và rút gọn biểu thức A.

          *) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt 

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2

tiếp điểm), vẽ dây AC// OM.

a)     Chứng minh OM  AB tại H và suy ra OH.OM = R2.

b)    MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c)     Vẽ AKBC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

mọi người giúp mik với 

1

Câu 2:

a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)

=>\(2m\ne4\)

=>\(m\ne2\)

b: Thay m=0 vào (d1), ta được:

\(y=\left(0-1\right)x+2=-x+2\)

Thay m=0 vào (d2), ta được:

\(y=\left(3-0\right)x-2=3x-2\)

Vẽ đồ thị:

loading...

c: Phương trình hoành độ giao điểm là:

3x-2=-x+2

=>3x+x=2+2

=>4x=4

=>x=1

Thay x=1 vào y=3x-2, ta được:

y=3*1-2=3-2=1

d:

Khi m=0 thì (d2): y=3x-2

Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox

y=3x-2 nên a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq72^0\)

Câu 3:

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

b: Ta có: AC//OM

OM\(\perp\)AB

Do đó: AB\(\perp\)AC

=>ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

mà ΔABC nội tiếp (O)

nên O là trung điểm của BC

=>B,O,C thẳng hàng

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)CM tại E

Xét ΔMBC vuông tại B có BE là đường cao

nên \(ME\cdot MC=MB^2\)(3)

Xét ΔMBO vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)

TL

Mik ko chắc chắn lắm nha sai thì t i k cho mik'

Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'

Hok tốt

28 tháng 10 2021

áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)

\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)

TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC

P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)

=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)

=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)

15 tháng 1 2024

A B C D P H Q O M E I

a/

Ta có

\(\widehat{APQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow PQ\perp AD\)

\(BC\perp AD\left(gt\right)\)

=> PQ//BC (cùng vg với AD)

=> BQPC là hình thang

Xét tg OPQ có

OP = OQ (bán kính (O)) => tg OPQ cân tại O

\(OM\perp BC\left(gt\right);AD\perp BC\) => OM//AD

Mà \(AD\perp PQ\left(cmt\right)\)

\(\Rightarrow OM\perp PQ\)

\(\Rightarrow\widehat{QOE}=\widehat{POE}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường phân giác)

Mà \(sđ\widehat{QOE}=sđcungQE;sđ\widehat{POE}=sđcungPE\) (góc ở tâm)

=> sđ cung QE = sđ cung PE  (1)

Ta có

sđ cung BE = sđ cung CE (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi cung chắn) (2)

Ta có

sđ cung BQ = sđ cung BE - sđ cung QE (3)

sđ cung CP = sđ cung CE - sđ cung PE (4)

Từ (1) (2) (3) (4) => sđ cung BQ = sđ cung CP

=> BQ = CP (Hai cung có số đo bằng nhau thì độ dài 2 dây trương cung bằng nhau)

=> BQPC là hình thang cân

b/ Gọi I là giao của PQ với M

Ta có 

OM//AD (cmt) => MI//DP

PQ//BC (cmt) => PI//DM

=> IMDP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> PI = DM (cạnh đối hbh)

Xét tg cân OPQ có

\(OM\perp PQ\left(cmt\right)\)

\(\Rightarrow PI=QI=\dfrac{QP}{2}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)

\(\Rightarrow DM=PI=\dfrac{QP}{2}\Rightarrow QP=2DM\)

c/

Ta có

\(sđ\widehat{QAE}=\dfrac{1}{2}sđcungQE;sđ\widehat{PAE}=\dfrac{1}{2}sđcungPE\) (góc nội tiếp)

Mà sđ cung QE = sđ cung PE (cmt)

\(\Rightarrow\widehat{QAE}=\widehat{PAE}\)

d/

Ta có

\(BH\perp AC\) (trong tg 3 đường cao đồng quy)

\(\widehat{ACQ}=90^o\) (góc nt chawns nửa đường tròn) \(\Rightarrow CQ\perp AC\)

=> BH//CQ

\(CH\perp AB\)

\(\widehat{ABQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BQ\perp AB\)

=> CH//BQ

=> BQCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> BQ=CH (cạnh đối hbh)

Mà BQ=CP (cmt)

=> CH=CP => tg CHP cân tại C

Mặt khác ta có \(BC\perp AD\Rightarrow BC\perp HP\)

=> CD là trung trực của HP (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung trực)

e/

Ta có

\(OM\perp BC\Rightarrow MB=MC\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung)

=> M là trung điểm của BC

Xét hình bình hành BQCH

Nối Q với H cắt BC tại M' => M'B = M'C (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Mà M cũng là trung điểm của BC \(\Rightarrow M'\equiv M\)

=> Q, M, H thẳng hàng

 

 

 

 

NM
7 tháng 8 2021

ta có a nhọn nên sin, cos ,tan và cotg của a đều là các số dương

nên ta có :

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)

\(tana=\frac{sina}{cosa}=\frac{2}{\sqrt{5}},cotga=\frac{1}{tana}=\frac{\sqrt{5}}{2}\)

30 tháng 6 2021

a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0 

Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2

b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:

   2x2 = 2mx + 1  <=> 2x2 - 2mx - 1 = 0

\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)

<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)

<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)

<=> \(m^2+\frac{2.1}{2}-1=2021^2\)

<=> \(m^2=2021^2\)

<=> \(x=\pm2021\)

Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021

17 tháng 7 2015

Ta có:

\(\left(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\right)^2=a+\sqrt{b}+a-\sqrt{b}+2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}\)

\(=2\left(a+\sqrt{a^2-b}\right)\)

\(\Rightarrow\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=\sqrt{2\left(a+\sqrt{a^2-b}\right)}\)

Tương tự, ta cũng được \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=\sqrt{2\left(a-\sqrt{a^2-b}\right)}\)

2 tháng 2 2021

lớp 9 chắc hệ phương trình

Bài 2.

Gọi chiều dài, chiều rộng hình chữ nhật là x, y ( m ; 0 < x,y < 55 )

Theo đề bài ta có : 

Chu vi hình chữ nhật = 110m => 2( x + y ) = 110 <=> x + y = 55 (1)

2 lần chiều dài hơn 3 lần chiều rộng 10m 

=> 2x - 3y = 10 (2)

Từ (1) và (2) => ta có hệ phương trình \(\hept{\begin{cases}x+y=55\\2x-3y=10\end{cases}}\)( bạn tự trình bày )

=> x = 35 và y = 20 ( tm )

=> Diện tích hình chữ nhật = 35.20 = 700m2

2 tháng 2 2021

Bài 3.

Gọi số sách ở giá thứ 1 là x, số sách ở giá thứ 2 là y ( quyển ; 0 < x,y < 400 )

Theo đề bài ta có :

Hai giá sách có 400 quyển => x + y = 400 (1)

Chuyển từ giá thứ 1 sang giá thứ 2 30 quyển thì số sách hai giá bằng nhau 

=> x - 30 = y + 30 <=> x - y = 60 (2)

Từ (1) và (2) => Ta có hệ phương trình \(\hept{\begin{cases}x+y=400\\x-y=60\end{cases}}\)

=> x = 230 và y = 170 ( tm )

Vậy ...

10 tháng 7 2015

Bài 2:

\(\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)