Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
Mik ko chắc chắn lắm nha sai thì t i k cho mik'
Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'
Hok tốt
áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)
\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)
TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC
P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)
=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)
=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)
A B C D P H Q O M E I
a/
Ta có
\(\widehat{APQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow PQ\perp AD\)
\(BC\perp AD\left(gt\right)\)
=> PQ//BC (cùng vg với AD)
=> BQPC là hình thang
Xét tg OPQ có
OP = OQ (bán kính (O)) => tg OPQ cân tại O
\(OM\perp BC\left(gt\right);AD\perp BC\) => OM//AD
Mà \(AD\perp PQ\left(cmt\right)\)
\(\Rightarrow OM\perp PQ\)
\(\Rightarrow\widehat{QOE}=\widehat{POE}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường phân giác)
Mà \(sđ\widehat{QOE}=sđcungQE;sđ\widehat{POE}=sđcungPE\) (góc ở tâm)
=> sđ cung QE = sđ cung PE (1)
Ta có
sđ cung BE = sđ cung CE (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi cung chắn) (2)
Ta có
sđ cung BQ = sđ cung BE - sđ cung QE (3)
sđ cung CP = sđ cung CE - sđ cung PE (4)
Từ (1) (2) (3) (4) => sđ cung BQ = sđ cung CP
=> BQ = CP (Hai cung có số đo bằng nhau thì độ dài 2 dây trương cung bằng nhau)
=> BQPC là hình thang cân
b/ Gọi I là giao của PQ với M
Ta có
OM//AD (cmt) => MI//DP
PQ//BC (cmt) => PI//DM
=> IMDP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> PI = DM (cạnh đối hbh)
Xét tg cân OPQ có
\(OM\perp PQ\left(cmt\right)\)
\(\Rightarrow PI=QI=\dfrac{QP}{2}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
\(\Rightarrow DM=PI=\dfrac{QP}{2}\Rightarrow QP=2DM\)
c/
Ta có
\(sđ\widehat{QAE}=\dfrac{1}{2}sđcungQE;sđ\widehat{PAE}=\dfrac{1}{2}sđcungPE\) (góc nội tiếp)
Mà sđ cung QE = sđ cung PE (cmt)
\(\Rightarrow\widehat{QAE}=\widehat{PAE}\)
d/
Ta có
\(BH\perp AC\) (trong tg 3 đường cao đồng quy)
\(\widehat{ACQ}=90^o\) (góc nt chawns nửa đường tròn) \(\Rightarrow CQ\perp AC\)
=> BH//CQ
\(CH\perp AB\)
\(\widehat{ABQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BQ\perp AB\)
=> CH//BQ
=> BQCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> BQ=CH (cạnh đối hbh)
Mà BQ=CP (cmt)
=> CH=CP => tg CHP cân tại C
Mặt khác ta có \(BC\perp AD\Rightarrow BC\perp HP\)
=> CD là trung trực của HP (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung trực)
e/
Ta có
\(OM\perp BC\Rightarrow MB=MC\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung)
=> M là trung điểm của BC
Xét hình bình hành BQCH
Nối Q với H cắt BC tại M' => M'B = M'C (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Mà M cũng là trung điểm của BC \(\Rightarrow M'\equiv M\)
=> Q, M, H thẳng hàng
ta có a nhọn nên sin, cos ,tan và cotg của a đều là các số dương
nên ta có :
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(tana=\frac{sina}{cosa}=\frac{2}{\sqrt{5}},cotga=\frac{1}{tana}=\frac{\sqrt{5}}{2}\)
a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0
Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2
b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:
2x2 = 2mx + 1 <=> 2x2 - 2mx - 1 = 0
\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)
=> phương trình luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)
<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)
<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)
<=> \(m^2+\frac{2.1}{2}-1=2021^2\)
<=> \(m^2=2021^2\)
<=> \(x=\pm2021\)
Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021
Ta có:
\(\left(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\right)^2=a+\sqrt{b}+a-\sqrt{b}+2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}\)
\(=2\left(a+\sqrt{a^2-b}\right)\)
\(\Rightarrow\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=\sqrt{2\left(a+\sqrt{a^2-b}\right)}\)
Tương tự, ta cũng được \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=\sqrt{2\left(a-\sqrt{a^2-b}\right)}\)
lớp 9 chắc hệ phương trình
Bài 2.
Gọi chiều dài, chiều rộng hình chữ nhật là x, y ( m ; 0 < x,y < 55 )
Theo đề bài ta có :
Chu vi hình chữ nhật = 110m => 2( x + y ) = 110 <=> x + y = 55 (1)
2 lần chiều dài hơn 3 lần chiều rộng 10m
=> 2x - 3y = 10 (2)
Từ (1) và (2) => ta có hệ phương trình \(\hept{\begin{cases}x+y=55\\2x-3y=10\end{cases}}\)( bạn tự trình bày )
=> x = 35 và y = 20 ( tm )
=> Diện tích hình chữ nhật = 35.20 = 700m2
Bài 3.
Gọi số sách ở giá thứ 1 là x, số sách ở giá thứ 2 là y ( quyển ; 0 < x,y < 400 )
Theo đề bài ta có :
Hai giá sách có 400 quyển => x + y = 400 (1)
Chuyển từ giá thứ 1 sang giá thứ 2 30 quyển thì số sách hai giá bằng nhau
=> x - 30 = y + 30 <=> x - y = 60 (2)
Từ (1) và (2) => Ta có hệ phương trình \(\hept{\begin{cases}x+y=400\\x-y=60\end{cases}}\)
=> x = 230 và y = 170 ( tm )
Vậy ...
Bài 2:
\(\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Câu 2:
a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)
=>\(2m\ne4\)
=>\(m\ne2\)
b: Thay m=0 vào (d1), ta được:
\(y=\left(0-1\right)x+2=-x+2\)
Thay m=0 vào (d2), ta được:
\(y=\left(3-0\right)x-2=3x-2\)
Vẽ đồ thị:
c: Phương trình hoành độ giao điểm là:
3x-2=-x+2
=>3x+x=2+2
=>4x=4
=>x=1
Thay x=1 vào y=3x-2, ta được:
y=3*1-2=3-2=1
d:
Khi m=0 thì (d2): y=3x-2
Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox
y=3x-2 nên a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq72^0\)
Câu 3:
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
b: Ta có: AC//OM
OM\(\perp\)AB
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)CM tại E
Xét ΔMBC vuông tại B có BE là đường cao
nên \(ME\cdot MC=MB^2\)(3)
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)