Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
1)B.\(-3xy\)
2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)
3)C.\(\frac{2}{xy}\) và D.\(-5\)
4)C.\(9^2yz\)
Câu 2:
1)C.\(7+2x^2y\)
2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)
3)A.\(5-x\) và D.\(-35.5\)
4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)
Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)
Câu 4:B.\(-2,5\)
Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12
Câu 6:B.Hệ số:-243,bậc bằng 10
Nhớ tick cho mình nha!
nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.a)
\(C=A.B=-\frac{2}{3}xy^2.\frac{9}{4}x^3y=-\frac{1}{1}.\frac{3}{2}.x^{1+3}.y^{2+1}=-\frac{3}{2}x^4.y^3\)
b)\(C=-\frac{3}{2}x^4.y^3\Rightarrow C_{\left(-1,-2\right)}=-\frac{3}{2}\left(-1\right)^4.\left(-2\right)^3=-\frac{3}{2}.1.\left(-8\right)=\frac{3}{1}.4=12\)
2.a)
\(A=\left(2xy^2\right)^2\left(-\frac{1}{2}x^3.y\right)=\left(4x^2y^{2.2}\right)\left(-\frac{1}{2}x^3y\right)=-2.\left(x^{2+3}y^{4+1}\right)=-2\left(x^5y^5\right)\)
\(A=\left(-2\right)\left(xy\right)^5\) Hệ số =-2; bậc 5 với cả x và y
b) tự thay giống câu (1)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, M = \((\dfrac{-5}{9}x^6y^4)\) \((\dfrac{9}{10}x^3y)\)
= \(\dfrac{-1}{2}x^9y^5\)
Hệ số : \(\dfrac{-1}{2}\) , Phần biến : x,y
b, thay x=-1 , y=2 và đơn thức M
Ta có : M = \(\dfrac{-1}{2}.(-1)^9.2^5\)
= \(\dfrac{-1}{2}.\left(-1\right).32\)
= 16
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=5m\cdot x^6y^9\)
\(B=\dfrac{-2}{m}x^6y^9\)
Do đó: A và B đồng dạng
b: \(A-B=x^6y^9\cdot\left(5m+\dfrac{2}{m}\right)=\dfrac{5m^2+2}{m}\cdot x^6y^9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
x-y = 3 =>x=3+y
=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
Áp dụng BĐT chứa dấu giá trị tuyệt đối:
\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)
=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0
=>\(-1\le y\le3\)
Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3
B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)
Vậy chữ số tận cùng của A là 1
Ta có phần hệ số của đơn thức là: 9.(-2/3) = -6. Chọn C