Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!

bài 1 ( tự luận )
a, Để \(\frac{3x+3}{x^2-1}\)Xác định
\(\Rightarrow\orbr{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne-1\\x\ne1\end{cases}}\)
\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)
Thay \(\frac{3}{x-1}=2\)......
\(c,\)Để \(\frac{3}{x-1}\)nguyên
\(\Rightarrow3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(x-1=1\Rightarrow x=2\)
\(x-1=-1\Rightarrow x=0\)
\(x-1=3\Rightarrow x=4\)
\(x-1=-3\Rightarrow x=-2\)
\(KL:x\in\left\{0;4;\pm2\right\}\)

Câu 1:
\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)
\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2013\)
Câu 2:
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
\(B=3a^2-6a+2017=3a^2-6a+3+2014\)
\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(a=1\)
Lại có \(a=b=c\Rightarrow a=b=c=1\)
Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)
Câu 5:
\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)
Với \(n=1;n=2\) (*) đúng
Giả sử (*) đúng với n=k khi đó (*) thành:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)
Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có:
\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)
Đẳng thức cần chứng minh tương đương với:
\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)
\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)
\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)
Theo nguyên lí quy nạp ta có Đpcm
Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(t=n^2+3n\) thì ta có:
\(A=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Câu 2: C
Câu 3: Thể tích mỗi khối lập phương là \(3^3=27\left(\operatorname{cm}^3\right)\)
Thể tích của hình lập phương là \(27\cdot30=810\left(\operatorname{cm}^3\right)\)
Độ dài mỗi cạnh của hình lập phương là:
\(\sqrt[3]{810}=3\sqrt[3]{10}\left(\operatorname{cm}\right)\)
Diện tích toàn phần của hình lập phương là:
\(\left(3\sqrt[3]{10}\right)^2\cdot6=9\cdot\sqrt[3]{100}\cdot6=54\sqrt[3]{100}\left(\operatorname{cm}^2\right)\)