\(\left(x^2-3\right)^2+16\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

(1-x^2)^2-4x(1-x^2)

=(1-x^2)(1-x^2-4x)

=(1-x^2)(1-x)^2

8 tháng 9 2017

\(\left(1-x^2\right)-4x\left(1-x^2\right)\)

\(=\left(1-x^2\right)\left(1-x^2-4x\right)\)

\(=\left(1-x^2\right)\left(1-x\right)^2\)

28 tháng 8 2017

Ta có

(x2-3)2+16

=x4-6x2+9+16

=x4-6x2+25

=x4+10x2+25-16x2

=(x2+5)2-16x2

=(x2+5-4x)(x2+5+4x)

24 tháng 8 2017

addws

25 tháng 9 2018

(ab-1)2 + (a+b)2

= a2b2 - 2ab + 1 + a2 + 2ab + b2

= a2b2 + 1 + a2 + b2

= a2.(b2+1) + (1+b2)

= (a2+1).(b2+1)

30 tháng 9 2018

  \(A=\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

Đặt \(x-y=a,y-z=b,z-x=c\Rightarrow a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+3ab.\left(-c\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Vậy \(A=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

        \(x^4+4x^2+16\)

\(=\left(x^2\right)^2+2.x^2.4+4^2-4x^2\)

\(=\left(x^2+4\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+4\right)\left(x^2+2x+4\right)\)

18 tháng 10 2019

      (x + 2y - 3)2  - 4(x + 2y - 3) + 4

=   (x + 2y - 3)2  - 2. 2. (x + 2y - 3)  +  22   (hằng đẳng thức số 2, bình phương  của một hiệu)

=  ( x + 2y - 3 - 2)2

= ( x + 2y - 5)2

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

24 tháng 9 2019

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

2 tháng 10 2016

25(x-y)2-16(x+y)2

=[5(x-y)]2-[4(x+y)]2

=[5x-5y]2-[4x+4y]2

=(5x-5y+4x+4y)[(5x-5y)-(4x+4y)]

=(9x-y)(x-9y)

2 tháng 10 2016

không có số 0 đâu nhá đánh lộn