Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-1\right)-4x\left(x-1\right)\)
\(3x\left(x-1\right)-4x\left(x-1\right)\)
\(-x\left(x-1\right)\)
\(-1x^2+x\)
\(-x^2+x\)
\(3x\left(x-1\right)-4x\left(x-1\right)\)
\(-1\left(x^2-x\right)\)
\(-1\left(x-1\right)x\)
\(3x\left(x-1\right)-4x\left(x-1\right)\)
\(=\left(3x-4x\right)\left(x-1\right)\)
\(=x\left(x-1\right)\)
Dùng phương pháp: Đặt nhân tử chung
[(4x+1)(3x+2)][(12x-1)(x+1)]=4
=>(12x^2+11x+2)(12x^2+11x-1)=4
dat 12x^2+11x-1=ythi y(y+3)=4
=>Y^2+3y-4=0
=>y^2+4y-y-4=0
=>y(y+4)-(y+4)=0=>9y-1)(y-4)=0
ban tu giai tiep nha
(4x + 1)(12x - 1)(3x + 2)(x+1) = 4
[(4x+1)(3x+2)][(12x-1)(x+1)]=4
(12x2+11x+2)(12x2+11x-1)=4
dat a=12x2+11x+2
khi do phuong trinh tro thanh:
a(a-3)=4
a2-3a-4=0
a2+a-4a-4=0
a(a+1)-4(a+1)=0
(a+1)(a-4)=0
=>a+1=0 hoac a-4=0
=>a=-1 hoac a=4
=>12x2+11x+2=-1 hoac 12x2+11x+2=4
+)12x2+11x+2=-1
=>12x2+11x+3=0
=>36x2+33x+12=0
=>36x2+33x+121/16+71/16=0
=>(6x+11/4)2=-71/16(vo li)
+)12x2+11x+2=4
=>12x2+11x-2=0
=>36x2+33x-6=0
=>36x2+33x+121/4-145/4=0
=>(6x+11/4)2=145/4
=>6x+11/4=(can 145)/2
...(tu lam tiep nha)
\(H=\left(x^2-x+1\right)\left(x^2+3x+1\right)+4x^2\)
Đặt \(x^2+1=t\), ta được:
\(H=\left(t-x\right)\left(t+3x\right)+4x^2\)
\(H=t^2+2xt+x^2\)
\(H=\left(t+x\right)^2\)
\(H=\left(x^2+x+1\right)^2\)
Vậy.......
1) 2x2 - 4x = 2x( x - 2 )
2) 3x - 6y = 3( x - 2y )
3) x2 - 3x = x( x - 3 )
4) 4x2 - 6x = 2x( x - 3 )
5) x3 - 4x = x( x2 - 4 ) = x( x - 2 )( x + 2 )
1) \(2x^2-4x=2x\left(x-2\right)\)
2) \(3x-6y=3\left(x-2y\right)\)
3) \(x^2-3x=x\left(x-3\right)\)
4) \(4x^2-6x=2x\left(2x-3\right)\)
5) \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
4x2-3x-1=(3x2-3x)+(x2-1)=3x(x-1)+(x-1)(x+1)=(x-1)(3x+x+1)=(x-1)(4x+1)
Ta có: ( 4x + 1)(12x - 1)(3x + 2)(x+1) - 4
= [(4x+1)(3x+2)]. [(12x-1)(x+1)] - 4 = (12x2 +11x + 2)(12x2 + 11x - 1) - 4
Đặt a = 12x2 + 11x - 1. Thay vào biểu thức ta có:
(a+3).a - 4 = a2 + 3a - 4 =a2 + 4a - a - 4 = a(a+4) - (a+4)
= (a+4)(a-1)
=> (4x+1)(12x-1)(3x+2)(x+1) - 4 = (12x2 + 11x + 3)(12x2+11x - 2)
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
\(4x^3-7x^2+3x\)
\(=4x^3-4x^2-3x^2+3x\)
\(=4x^2\left(x-1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(4x^2-3x\right)=x\left(x-1\right)\left(4x-3\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-15\)
\(=\left(x^2-5x+4\right)^2+2\left(x^2-5x+4\right)+1-16\)
\(=\left(x^2-5x+4+1\right)^2-4^2\)
\(=\left(x^2-4x+4+1-4\right)\left(x^2-4x+4+1+4\right)\)
\(=\left(x^2-4x+1\right)\left(x^2-4x+9\right)\)
(x-1)(3x-4x)
\(=-x\left(x-1\right)\)