Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(A=\frac{3x^2+14}{x^2+4}=\frac{3x^2+12+2}{x^2+4}=3+\frac{2}{x^2+4}\)
Để Amax => \(\frac{2}{x^2+4}max\)
\(\Rightarrow\left(x^2+4\right)min\)
Vậy A Max = 3+2=5
\(A=3+\dfrac{2}{x^2+4}\)
\(A_{max}\) khi \(\dfrac{2}{x^2+4}\) lớn nhất, mà \(\dfrac{2}{x^2+4}\) lớn nhất khi \(x^2+4\) nhỏ nhất
\(x^2+4\ge4\Rightarrow A_{max}=3+\dfrac{2}{4}=\dfrac{7}{2}\) khi \(x^2+4=4\Rightarrow x=0\)
\(A_{min}\) khi \(\dfrac{2}{x^2+4}\) nhỏ nhất \(\Rightarrow x^2+4\) lớn nhất. Mà GTLN của \(x^2+4\) không tồn tại \(\Rightarrow A_{min}\) không tồn tại
Hoặc 1 cách khác:
\(Ax^2+4A=3x^2+14\Rightarrow\left(A-3\right)x^2=14-4A\Rightarrow x^2=\dfrac{14-4A}{A-3}\)
Do \(x^2\ge0\forall x\Rightarrow\dfrac{14-4A}{A-3}\ge0\Rightarrow3< A\le\dfrac{14}{4}\)
\(\Rightarrow A_{max}=\dfrac{14}{4}=\dfrac{7}{2}\) ; \(A_{min}\) không tồn tại (ko có dấu = ở số 3)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)