Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x^2-x-1\right)^2-3=4x^2-2x-2+4\)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-2\left(2x^2-x-1\right)-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=1+2\sqrt{2}\\2x^2-x-1=1-2\sqrt{2}\end{matrix}\right.\Leftrightarrow x\in\left\{1.82;-1.32\right\}\)
1) Đặt \(x-2=a,\)\(2x-4=b,7-3x=c\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\a^3+b^3+c^3=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\end{matrix}\right.\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ \(\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{5}{2}\end{matrix}\right.\)
2) ĐK : \(x^2-x\ge0\)
gt ⇒ \(\left(x^4-2x^3+x\right)^2=2\left(x^2-x\right)\)
⇒ \(x^8-4x^7+4x^6+2x^5-4x^4-x^2+2x=0\)
⇒ \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x^4-2x^3+x^2+1\right)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=1\\x=0\\x=-1\end{matrix}\right.\)(t/m)
x2 - 2x + 1 = 0
=> x2 - 2x = - 1
=> x2 bé hơn 2x là 1 đơn vị.
Bạn tự tìm tiếp nha !
\(\sqrt{x^2-2x+4}=x-1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=x-1\)
\(\Leftrightarrow x-2=x-1\)
\(\Leftrightarrow x-x=-1+2\)
Giải tới đây thấy vô lý
\(\Rightarrow VNo\)
\(\sqrt{x^2-2x+4}=x-1\)<=> x2-2x+4 =(x-1)2 (Do x2-2x+4 >0)
<=> x2-2x+4 =x2-2x+1 <=> Phương trình vô nghiệm
a)1+x\(\ge\)mx+m
<=>x-mx\(\ge\)m-1
<=>x(1-m)\(\ge\)m-1(1)
*)Nếu m=1 thì (1)<=>0x=0(thỏa mãn với mọi x)
*)Nếu m < 1 thì 1-m>0
(1)<=>\(x\ge\dfrac{m-1}{1-m}\)
<=>x\(\ge\)-1
*)Nếu m>1 thì 1-m<0
(1)<=>x\(\le\dfrac{m-1}{1-m}\)
<=>x\(\le-1\)
Vậy...
b)2x4-x3-2x2-x+2=0
<=>(2x4-2x3)+(x3-x2)-(x2-x)+(2x+2)=0
<=>(x-1)(2x3+x2-x+2)=0
bó tay :)
@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.
ĐK:...
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))
\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)
\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
Lời giải:
a)
Với $m=3$ thì pt trở thành:
$x^2-2x=0\Leftrightarrow x(x-2)=0\Leftrightarrow x=0$ hoặc $x=2$
b)
PT có 2 nghiệm phân biệt $x_1,x_2\Leftrightarrow \Delta'=1-(m-3)>0$
$\Leftrightarrow m< 4$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12$
$\Leftrightarrow 4x_1=-8\Leftrightarrow x_1=-2$
$\Leftrightarrow x_2=2-x_1=4$
$m-3=x_1x_2=(-2).4=-8\Leftrightarrow m=-5$ (thỏa mãn)
Vậy..........