Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Gọi (D):y=ax+b chứa điểm A, C
(D'):y=a'x+b' chứa điểm B, C
* Ta có: A thuộc (D) khi 1= 2a+b (1)
C thuộc (D) khi 4= 3a+b (2)
Giải hệ (1), (2) ta suy ra a=3 , b=-5
* Ta có: B thuộc (D') khi 3=6a'+b' (3)
C thuộc (D') khi 4=3a'+b' (4)
Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5
Ta thấy: a.a' = 3.(-1/3)=-1
Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)
Vậy tam giác ABC vuông tại C
Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:
AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)
BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)
Vậy AC=BC (6)
Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C
SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)
b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)
Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B
Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)
ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong
mik nghĩ câu a.b. bn làm đc,
c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân) (1)
xét 2 tam giácvuông BDM và ta giác vuông CDM
MD chung,
MB=MC(trung tuyến AM)
=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)
=>DM là trung tuyến của BC (2)
từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng
mik làm sai ở đâu thì nhắc nha
1.
\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)
Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)
\(\Leftrightarrow2y^2+10y+11=0\)
\(\Leftrightarrow y=...\)
2.
Kẻ \(EF\perp BC\)
\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)
Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)
Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)
\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)
Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE
\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)
Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))
Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)
\(\Rightarrow R=3r=\dfrac{9}{2}\)
a)Xét tam giác ACD và tam giác ECD(đều là vuông)
ECD=DCA(Vì CD là p/giác)
CD là cạnh chung
\(\Rightarrow\)tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
\(\Rightarrow\)AD=DE(cạnh cặp tương ứng)
\(\Rightarrow\)D cách đều hai mút của AE
\(\Rightarrow\)CD là đường trung trực của AE
Do đó CI\(\perp\)AE
\(\Rightarrow\)Tam giác CIE là tam giác vuông
c)Vì AD=DE(câu b)
Mà tam giác BDE là tam giác vuông(tại E)
\(\Rightarrow\)DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)
\(\Rightarrow\)AD<BD(đpcm)
d)Kéo dài BK cắt AC tại O
Vì BK\(\perp\)CD(gt)
\(\Rightarrow\)CK là đường cao thứ nhất của tam giác OBC(1)
Vì tam giác ABC vuông tại A
Nên BA\(\perp\)AC
\(\Rightarrow\)BA là đường cao thứ hai của tam giác OBC(2)
Theo đề bài ta có DE\(\perp\)BC
Nên DE là đường cao thứ ba của tam giác OBC(3)
Từ (1),(2) và (3) suy ra:
Ba đường cao giao nhau tại một điểm trùng với điểm D
\(\Rightarrow\) 3 đường thẳng AC;DE;BK đồng quy(đpcm)
Bài 1 Các câu sau đúng Đ hay sai S 1 Tam giác có 2 góc bằng 45° là tam giác vuông cân.2 Hai tam giác có 2 cặp góc tương ứng bằng nhau thì cặp góc còn lại cũng tương ứng bằngnhau3 Hai tam giác có 2 cặp cạnh tương ứng bằng nhau thì cặp cạnh còn lại cũng tương ứngbăng nhau4 Nếu 1 cạnh góc vuông và 1 góc nhọn của tam giác vuông này bằng 1 cạnh góc vuông vàgóc nhọn của tam giác vuông kia thì 2 tam giác vuông đó bằng nhau.5 Tam giác cân có 1 góc bằng 60° là tam giác đều.6 Tạm giác cân có 1 góc bằng 45° là tam giác vuông cân.7 Nếu tam giác có độ dài 3 cạnh lần lượt là 3,4,5 thì tam giác đó là tam giác vuông.8 Hai tam giác đều thì bằng nhau.9 Góc ngoài của tam giác luôn lớn hơn mỗi góc trong của tam giác đó.10 Trong tam giác cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực củacạnh đáy.11 Nếu cạnh huyền của tam giác vuông cân này bằng cạnh huyền của tam giác vuông cânkia thì 2 tam giác đó bằng nhau .12 Tam giác ABC vuông tại A, M là trung điểm của đoạn thắng BC. Nếu AB 2 cm, AC 51 cm thì AM 2 cm.13 Tam giác ABC vuông tại A, M là trung điểm của BC. Nếu 2B 30° và AM 6 cm, thìAC 6cm.14 Nếu 2 tam giác cân có 2 cặp cạnh bên bằng nhau thì 2 tam giác cân đó bằng nhau.15 Nếu cạnh bên và cạnh đáy của tam giác cân này bằng cạnh bên và cạnh đáy của tam giáccân kia thì 2 tam giác cân bằng nhau.16 Nếu 2 tam giác cân có chung góc ở đỉnh thì 2 cạnh đáy của chúng song song với nhau.17 Nếu 2 cạnh và 1 góc của tam giác này lần lượt bằng 2 cạnh và 1 góc của tam giác kia thì2 tam giác đó bằng nhau.18 Nếu 3 tam giác cân AMN , BMN , CMN cùng chung cạnh đáy MN thì 3 điểm A, B, Cthắng hàng.19 Nếu 2 tam giác vuông cân có 1 cặp cạnh góc vuông bằng nhau thì chúng bằng nhau.20 Trong tam giác cân các góc đều có thể là góc nhọn hoặc góc tù.