\(^2\)-(2x-1)(2x+1)=10
b) (x-4)\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

a)   4(x - 3)2 - (2x - 1)(2x + 1) = 10

\(\Leftrightarrow\)4(x2 - 6x + 9) - (4x2 - 1) = 10

\(\Leftrightarrow\)4x2 - 24x + 36 - 4x2 + 1 - 10 = 0

\(\Leftrightarrow\)-24x + 27 = 0

\(\Leftrightarrow\)-24x = -27

\(\Leftrightarrow\)x = \(\frac{9}{8}\)

Vậy x = 9/8

b)  (x - 4)2 - (x - 2)(x + 2) = 6

\(\Leftrightarrow\)x2 - 8x + 16 - x2 + 4 - 6 = 0

\(\Leftrightarrow\)-8x + 14 = 0

\(\Leftrightarrow\)-8x = -14

\(\Leftrightarrow\)x = \(\frac{7}{4}\)

Vậy x = 7/4

c)  9(x + 1)2 - (3x - 2)(3x + 2) = 10

\(\Leftrightarrow\)9(x2 + 2x + 1) - 9x2 + 4 - 10 = 0

\(\Leftrightarrow\)9x2 + 18x + 9 - 9x2 + 4 - 10 = 0

\(\Leftrightarrow\)18x + 3 = 0

\(\Leftrightarrow\)18x  =  - 3

\(\Leftrightarrow\)x = \(\frac{-1}{6}\)

Vậy x = -1/6

23 tháng 12 2017

a, ->4(x^2-6x+9) - 4x^2 +1 = 10

-> 4x^2 - 24x + 36 - 4x^2 +1  = 10

-> -24x = -27

-> x = 9/8

b, -> x^2 + 8x -16 -x^2 + 4 = 6

-> 8x = 18

-> x= 9/4

c, -> 9x^2 + 18x + 9 - 9x^2 +4 =10 

-> 18x = -3

-> x = -1/6

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

16 tháng 9 2018

e, (x-1)(x2 + x + 1)-x(x+2)(x-2) = 5

x(x2 +x + 1 ) - (x2 + x +1 )- [ x (x2 - 4)] = 5

x3 +x2 +x - x2 - x - 1 - x3 +4x = 5

4x - 1 = 5

4x = 6

x =\(\dfrac{3}{2}\)

f, (x-1)3 - (x+3)(x2 - 3x +9 ) +3(x2 - 4) = 2

x - 3x2 +3x - 1 - [( x3 - 3x2 + 9x) + (3x2 - 9x +27)] = 2

x3 - 3x2 + 3x - 1 -x3 +3x2 -9x - 3x2 +9x - 27 +3x2 - 12 = 2

3x - 1 - 27 - 12 = 2

3x = 42

x = 14

16 tháng 9 2018

muốn tao trả lờ cho ko , mai đến lớp nhá

6 tháng 3 2020

a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)

\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)

\(\Leftrightarrow-x^2+x+2=0\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

10 tháng 3 2020

Cậu làm rõ từng bước của câu a giùm tớ với

a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)

\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)

\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)

\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)

\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)

c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)

\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)

\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)

d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)

\(=\frac{3-12x^2}{-2x^2-4x+16}\)

27 tháng 3 2020

a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)

c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)

\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)