Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2n-3⋮n+1\)
\(\Rightarrow2n+2-5⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
Vì \(n\inℤ\) nên \(n+1\inℤ\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n + 1 | 1 | 5 | -1 | -5 |
n | 0 (thỏa mãn) | 4 (thỏa mãn) | -2 (thỏa mãn) | -6 (thỏa mãn) |
Vậy \(n\in\left\{-6;-2;0;4\right\}\).
Bài 5:
a) Xét tam giác \(ABD\)và tam giác \(AHD\)có:
\(AH=AB\)(giả thiết)
\(\widehat{BAD}=\widehat{HAD}\)(vì \(AD\)là tia phân giác của góc \(BAH\))
\(AH\)cạnh chung
Suy ra \(\Delta ABD=\Delta AHD\left(c.g.c\right)\)
b) \(\Delta ABD=\Delta AHD\Rightarrow\widehat{AHD}=\widehat{ABD}=90^o\)
do đó \(DH\)vuông góc với \(AC\).
Bài 6:
Xét tam giác \(OAD\)và tam giác \(OBD\)có:
\(OA=OB\)(giả thiết)
\(\widehat{AOD}=\widehat{BOD}\)(vì \(OD\)là tia phân giác góc \(AOB\))
\(OD\)cạnh chung
Suy ra \(\Delta OAD=\Delta OBD\left(c.g.c\right)\)
\(\Rightarrow DA=DB\)(hai cạnh tương ứng)
\(\widehat{ODA}=\widehat{ODB}\)(hai góc tương ứng)
mà \(\widehat{ODA}+\widehat{ODB}=180^o\)(hai góc kề bù)
nên \(\widehat{ODA}=\widehat{ODB}=90^o\)
suy ra \(OD\)vuông góc với \(AB\).
Bài 5:
Vì \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow x=-7.10=-70;y=-7.15=-105;z=-7.12=-84\)
Vậy x = -70; y = -105; z = -84
Bài 6:
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{z^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2.z^2}{2.16}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow x^2=4.4=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(y^2=9.4=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
\(z^2=4.16=64\Rightarrow\orbr{\begin{cases}z=8\\z=-8\end{cases}}\)
Vậy x = 4; y = 6; z = 8 hoặc x = -4; y = -6; z = -8.
6, TA CÓ :
\(\frac{x^2}{4}\) =\(\frac{y^2}{9}\)=\(\frac{2z^2}{32}\)và x2 -y2 + 2z2 =108
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU :
TA CÓ :\(\frac{x^2}{4}\) - \(\frac{y^2}{9}\)+ \(\frac{2z^2}{32}\)=\(\frac{x^2-y^2+2z^2}{4-9+32}\)=\(\frac{108}{27}=4\)
=> \(x^2=4.4=16\)=> x = \(\sqrt{16}=4\)
\(y^2=9.4=36\Rightarrow y=\sqrt{36}=6\)
\(2z^2=32.4=128\Rightarrow z^2=\frac{128}{2}=64\Rightarrow z=\sqrt{64}=8\)
b) Ta có: ΔDBC vuông tại B(gt)
nên \(\widehat{D}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)
Ta có: \(\widehat{ABD}+\widehat{ABC}=\widehat{DBC}\)(BA là tia nẵm giữa hai tia BD,BC)
nên \(\widehat{ABD}+\widehat{ABC}=90^0\)(2)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{C}\)(hai góc ở đáy)(3)
Từ (1), (2) và (3) suy ra \(\widehat{ABD}=\widehat{ADB}\)
Xét ΔABD có \(\widehat{ABD}=\widehat{ADB}\)(cmt)
nên ΔABD cân tại A(Định lí đảo của tam giác cân)
a) Xét ΔAMB và ΔAMC có
AM chung
AB=AC(ΔABC cân tại A)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)