Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) ( x - 4 )2 - 25 = 0
<=> ( x - 4 - 5 )( x - 4 + 5 ) = 0
<=> ( x - 9 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-9=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\end{cases}}}\)
Vậy tập nghiệm phương trình S = { -2; 9 }
b) ( x - 3 )2 - ( x + 1 )2 = 0
<=> ( x - 3 - x - 1 )( x - 3 + x + 1 ) = 0
<=> -4( 3x - 2 ) = 0
<=> 3x - 2 = 0
<=> \(x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)là nghiệm phương trình.
c) ( x2 - 4 )( 2x + 3 ) = ( x2 - 4 )( x - 1 )
<=> ( x2 - 4 )( 2x + 3 ) - ( x2 - 4 )( x - 1 ) = 0
<=> ( x2 - 4 )( 2x + 3 - x - 1 ) = 0
<=> ( x2 - 4 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-2\end{cases}}}\)
Vậy tập nghiệm phương trình là S = { 2; -2 }
d) ( 3x - 7 )2 - 4( x + 1 )2 = 0
<=> ( 3x - 7 )2 - [ 2( x + 1 ) ] 2 = 0
<=> [ ( 3x - 7 ) - 2( x + 1 ) ][ ( 3x - 7 ) + 2( x + 1 )] = 0
<=> ( 3x - 7 - 2x - 2 )( 3x - 7 + 2x + 1 ) = 0
<=> ( x - 9 )( 5x - 6 ) = 0
<=> \(\orbr{\begin{cases}x-9=0\\5x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{6}{5}\end{cases}}}\)
Vậy tập nghiệm phương trình S = { 9; 6/5 }
# Học tốt #
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!
vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)
\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)
Chúc bạn học tốt!!
d/
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
e/
\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)
\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
Bài 1:
a. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^2+7x-3x-21-\left(x^2-x+5x-5\right)\)
\(=x^2 +7x-3x-21-x^2+x-5x+5\)
\(=-16\)
b. \(x^2\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^4-16x^2-x^4+1\)
\(=-16x^2+1\)
Bài 2:
a. \(x^2-25-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-1\left(x-5\right)=0\)
\(\left(x+4\right)\left(x-5\right)=0\)
* \(x+4=0\)
\(x=-4\)
* \(x-5=0\)
\(x=5\)
b. \(3x\left(x-2\right)-x+2=0\)
\(3x\left(x-2\right)-1\left(x-2\right)=0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
* \(3x-1=0\)
\(3x=1\)
\(x=\frac{1}{3}\)
* \(x-2=0\)
\(x=2\)
c. \(x\left(x-4\right)-2x+8=0\)
\(x\left(x-4\right)-\left(2x-2.4\right)=0\)
\(x\left(x-4\right)-2\left(x-4\right)=0\)
\(\left(x-2\right)\left(x-4\right)=0\)
* \(x-2=0\)
\(x=2\)
* \(x-4=0\)
\(x=4\)
a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)
\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm S = {1}
b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0
<=> x = 2 hoặc x = -2 hoặc x = -4
Vậy phương trình có tập nghiệm S = { 2; -2; -4 }
c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 1; 9 }
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
1) (x - 2)2 - (x - 3)(x + 3) = 17
=> x2 - 4x + 4 - x2 + 9 = 17
=> -4x = 17 - 13
=> -4x = 4
=> x = -1
2) TTT
3) x2 + 6x - 147 = 0
=> x2 + 19x - 13x - 147 = 0
=> x(x + 19) - 13(x + 19) = 0
=> (x - 13)(x + 19) = 0
=> \(\orbr{\begin{cases}x-13=0\\x+19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-19\end{cases}}\)
4) (3x - 5)(2x + 3) - 6x2 = 7
=> 6x2 + 9x - 10x - 15 - 6x2 = 7
=> -x - 15 = 7
=> -x = 7 + 15
=> -x = 22
=> x = -22
5) TL
a)(x - 4)2 - 25= 0
<--> ( x - 4)2 - 52 = 0
<--> ( x - 4 - 5 )( x - 4 + 5 ) = 0
<--> ( x - 4 - 5 ) = 0 <--> x - 9 = 0 <--> x = 9
hoặc
<--> ( x - 4 + 5 ) = 0 <--> x + 1 = 0 <--> x = -1
b)bài này tương tự bài a
\(a,\left(x-4\right)^2-25=0\)
\(\Rightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Rightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
\(b,\left(x-3\right)^2-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x-3-x-1\right)\left(x-3+x+1\right)=0\)
\(\Rightarrow-4\left(2x-2\right)=0\)
\(\Rightarrow2\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(c,\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Rightarrow2x+3=x-1\)
\(\Rightarrow2x-x=-1-3\)
\(\Rightarrow x=-4\)
\(d,\left(3x-7\right)^2-4\left(x+1\right)^2=0\)
\(\Rightarrow\left(3x-7\right)-\left[2\left(x+1\right)\right]^2=0\)
\(\Rightarrow\left(3x-7\right)^2-\left(2x+2\right)^2=0\)
\(\Rightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)
\(\Rightarrow\left(x-9\right)\left(5x-5\right)=0\)
\(\Rightarrow5\left(x-9\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)