Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
Hai đường thẳng song song nhau và có một đường thẳng cắt hai đường thẳng đó sẽ tạo ra ít nhất 1 cặp góc so le trong bằng nhau.
Ta có: Hai tia phân giác của 2 góc so le trong đó.
=> Hai góc tạo thành bởi hai tia phân giác bằng nhau.
=> Hai góc đó là hai góc đồng vị bằng nhau.
Vậy ta có ĐCCM
a. \(25.5^3.\frac{1}{625}.5^2=5^2.5^3.\frac{1}{5^4}.5^2=\frac{5^7}{5^4}=5^3\)
b. \(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{2^4}=\frac{2^4}{2^4}=1\)
c. \(5^2.3^5.\left(\frac{3}{5}\right)^2=5^2.3^5.3^2.\frac{1}{5^2}==\frac{5^2}{5^2}.3^7=3^7\)
d. \(\left(\frac{1}{7}\right)^2.\frac{1}{7}.49^2=\frac{1}{7^3}.7^4=\frac{7^4}{7^3}=7\)
Vì \(\left|x-3,5\right|\ge0\); \(\left|4,5-x\right|\ge0\)
=> \(\left|x-3,5\right|+\left|4,5-x\right|\ge0\)
Mà theo đề bài: \(\left|x-3,5\right|+\left|4,5-x\right|=0\)
=> \(\begin{cases}\left|x-3,5\right|=0\\\left|4,5-x\right|=0\end{cases}\)=> \(\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)=> \(\begin{cases}x=3,5\\x=4,5\end{cases}\), vô lý vì x không thể cùng đồng thời nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
a: Xét ΔABC và ΔABD có
AB chung
BC=BD
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔACD và ΔBCD có
AC=BC
CD chung
AD=BD
Do đó:ΔACD=ΔBCD
Bạn tự vẽ hình nhé.
Hai đường thẳng song song nhau và có một đường thẳng cắt hai đường thẳng đó sẽ tạo ra ít nhất 1 cặp góc so le trong bằng nhau.
Ta có: Hai tia phân giác của 2 góc so le trong đó.
=> Hai góc tạo thành bởi hai tia phân giác bằng nhau.
=> Hai góc đó là hai góc đồng vị bằng nhau.
Vậy ta có ĐCCM
\(\frac{28}{14}=2\)
\(\frac{5}{2}:2=\frac{5}{4}\)
\(\frac{8}{4}=2\)
\(\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
\(\frac{3}{10}\)
\(\frac{21}{10}:7=\frac{3}{10}\)
\(3:\frac{3}{10}=\frac{1}{10}\)
từ đó ta có các tỉ lệ thức bằng nhau là:
28:14=8:4
3:10=2,1:7
Không mấy tính tổng quát, giải sử x=<y=<z
=> 1/x+1/x+1/x >=1/x +1/y +1/z = 3/5
=> 3/x>=3/5
=> X=<5
Có 1/x< 3/5; do 1/x +1/y +1/z = 3/5
=> X>5/3 => x=2,3,4,5
Xét các trường hợp ta thấy chỉ có x=y=z=5 thỏa
D E F B I H K
a,xét \(\Delta\)vuông EDB(góc EDB=90 độ)và\(\Delta\)vuông EIB(góc EIB=90 độ)có:
EB chung
góc DEB =góc BEI(gt)
=>\(\Delta\)vuôngEDB=\(\Delta\)vuông EIB(cạnh huyền-góc nhọn)
b,=>DB=BI(2 cah t/ứng)
xét \(\Delta\)vuôngDBH(góc HDB=90 độ)và\(\Delta\)vuông IBF(góc FIB=90 độ)có:
góc DBH=góc IBF(đđ)
DB=BI(cmt)
=>\(\Delta\)vuông DBH=\(\Delta\)vuông IBF(góc nhọn kề cạnh góc vuông)
=>HB=BF(2 cah t/ứng)
c,có \(\Delta\)DBH vuông tại D(gt)
=>DB<HB(cah đối diện với góc lớn nhất)
mà BH=BF =>DB<BF
d,từ câu a=>ED=EI
có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF
=>\(\Delta\)EHF cân tại E(đl tam giác cân)
dựa vào trường hợp đặc biệt của tam giác cân:
có EB là tia phân giác=>EB c~ là đng trung tuyến (1)
mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)
=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB
hay E,B,K thẳng hàng
GT, KL, hình vẽ (tự làm)
a) Ta có: Góc DEB = góc FEB ( EB là tia phân giác)
Hay góc DEB = góc IEB
Xét \(\Delta EDB\) vuông tại D và \(\Delta EIB\) vuông tại I có:
EB chung
góc DEB = góc IEb (cmt)
\(\Rightarrow\Delta EDB=\Delta EIB\) (cạnh huyền- góc nhọn)
\(\Rightarrow DB=IB\) ( 2 cạnh t/ứ)
b) Xét \(\Delta DBH\) vuông tại D và \(\Delta IBF\) vuông tại I có:
DB = IB (cmt)
góc DBH = góc IBF (2 góc đối đỉnh)
\(\Rightarrow\Delta DBH=\Delta IBF\left(c.h-g.n\right)\)
\(\Rightarrow BH=BF\)( 2 cạnh tương ứng)
c) Tự làm
d)c) t/g BDH = t/g BIF (câu b)
=> DH = IF (2 cạnh tương ứng)
Mà ED = EI (do t/g EDB = t/g EIB
=> DH + ED = IF + EI
=> EH = EF
t/g EHK = t/g EFK (c.c.c)
=> HEK = FEK (2 góc tương ứng)
=> EK là phân giác HEF (1)
Có: DEB = IEB (do t/g EDB = t/g EIB
=> EB là phân giác DEI (2)
Từ (1) và (2) => E,B,K thẳng hàng (đpcm)