Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải là x, y nguyên nhé.
a/ \(xy-y-x^2=1\)
\(\Leftrightarrow\left(xy-y\right)+\left(-x^2+1\right)=2\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=2\)
\(\Rightarrow\left(x-1,y-x-1\right)=\left(1,2;2,1;-1,-2;-2,-1\right)\)
Thế vô làm tiếp.
b/ \(x^2+xy=3x-y+1\)
\(\Leftrightarrow\left(xy+y\right)+\left(x^2-1\right)+\left(-3x-3\right)=-3\)
\(\Leftrightarrow y\left(x+1\right)+\left(x-1\right)\left(x+1\right)-3\left(x+1\right)=-3\)
\(\Leftrightarrow\left(x+1\right)\left(y+x-4\right)=-3\)
\(\Rightarrow\left(x+1,x+y-4\right)=\left(1,-3;-3,1;-1,3;3,-1\right)\)
(x-3)[(2x-1)2-4) = 0
<=> \(\left[\begin{array}{nghiempt}x-3=0\\\left[2x-1\right]^2-4=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=3\\\left[2x-1\right]^2=4\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=3\\\left[\begin{array}{nghiempt}2x-1=2\\2x-1=-2\end{array}\right.\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=3\\x=\frac{3}{2}\\x=-\frac{1}{2}\end{array}\right.\)
a) (4x2)2(-5y3)(-xy)2
= 42x4(-5)y3x2y2
=(-5.16)(x4.x2)(y3.y2)
= -80x6y5
Phần hệ số là -80
Phần biến là x6y5
Bậc của đơn thứ là 11
b) (x2y)(-1/2axz)2(xyz)3
= x2y 1/4a2x2z2x3y3z3
= 1/4a2(x2x2x3)(yy3)(z2z3)
= 1/4a2x7y4z5
Phần hệ số là 1/4a2
Phần biến là x7y4z5
Bậc của đơn thức là 16
Ta có: f(x) = ax3 + 4x(x2- x) - 4x + 8
= ax3 +4x3 - 4x2 - 4x + 11 - 3
= x3(a + 4) - 4x(x + 1) + 11 -3
f(x)=g(x) <=>x3(a + 4) - 4x(x + 1) + 11 -3 = x3- 4x(bx +1)+c - 3
<=> \(\begin{cases}a+4=1\\x+1=bx+1\\c=11\end{cases}\) <=> \(\begin{cases}a=-3\\b=1\\c=11\end{cases}\)
Vậy a=-3, b=1 và c=11
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
Ta có: \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)
\(\Rightarrow\left(2x+1\right)^2=0\) và \(\left|x-1,2\right|=0\)
+) \(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
+) \(y-1,2=0\Rightarrow y=1,2\)
Vậy \(x=\frac{-1}{2};y=1,2\)
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
a) Tích của hai lũy thừa : x4 . x 12
b) Lũy thừa của x4 : (x4)4
c) Thương của hai lũy thừa x22 : x6
a)Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\y^4\ge0\end{matrix}\right.\)\(\Rightarrow x^2+y^4\ge0\)
Mà \(x^2+y^4=0\) suy ra \(\left\{\begin{matrix}x^2=0\\y^4=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b)Ta thấy: \(\left\{\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\) suy ra \(\left\{\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
c)Ta thấy: \(\left\{\begin{matrix}\left(x-11+y\right)^2\ge0\\\left(x-4-y\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)
Mà \(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\) suy ra \(\left\{\begin{matrix}\left(x-11+y\right)^2=0\\\left(x-4-y\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-11+y=0\\x-4-y=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x+y=11\\x-y=4\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=\frac{15}{2}\\y=\frac{7}{2}\end{matrix}\right.\)