Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 chia het cho (2x+1)
ma 7 chia het cho 1;7
=>2x+1=1=>x=0
2x+1=7=>x=3
ket luan x = 0;3
từ từ thôi cái này tốn có 4 câu hỏi thôi mà cho vào 1 câu làm gì
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
Bài giải
Gọi số đó là a, ta có:
a chia 5 dư 1
=> a-1+5chia hết cho 5
a+4 chia hết cho 5
a+4+20 chia hết cho 5
a+24 chia hết cho 5 (1)
a chia 7 dư 4
a-4 chia hết cho 7
a-4+28 chia hết cho 7
a+24 chia hết cho 7 (2)
từ (1) và (2) suy ra a+24 chia hết cho 7,5
để a+24 nhỏ nhất chia hết 7,5 thì a+24 thuộc BCNN(7,5)=35
a+24=35
a=11
xong rồi em
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Câu 1 :
a) Ta có : S=5+52+53+...+52006
5S=52+53+54+...+52007
\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)
\(\Rightarrow\)4S=52007-5
\(\Rightarrow S=\frac{5^{2007}-5}{4}\)
b) Ta có : S=5+52+53+...+52006
=(5+53)+(52+54)+...+(52004+52006)
=5(1+52)+52(1+52)+...+52004(1+52)
=5.26+52.26+...+52004.26\(⋮\)26
Vậy S\(⋮\)26
Câu 2 :
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.
Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6
\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6
\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6
\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)
Ta có : 3=3
4=22
5=5
6=2.3
\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}
\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}
Mà theo đề bài, a nhỏ nhất và chia hết cho 11
\(\Rightarrow\)a=418
Vậy số cần tìm là 418
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
số cần tìm 59