Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) ĐKXĐ: \(x\ne\pm5\)
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5+\left(2x+10\right)-\left(2x+10\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)
b) \(B=9x^2-42x+49=\left(3x-7\right)^2\)
Tại \(x=-3\)thì: \(B=\left[3.\left(-3\right)-7\right]^2=256\)
Bài 2:
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
b) \(A=4\)\(\Rightarrow\)\(\frac{4}{x-3}=4\)
\(\Rightarrow\)\(4\left(x-3\right)=4\)\(\Leftrightarrow\)\(x-3=1\)\(\Leftrightarrow\)\(x=4\) (t/m ĐKXĐ)
Vậy....
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\) ĐK đề bài
\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)
b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)
có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)
\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)
\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)
\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)
\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)
\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)
b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\left(\frac{x^2+2x+1}{\left(x+1\right).\left(x-1\right)}-\frac{x^2-2x+1}{\left(x+1\right).\left(x-1\right)}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\frac{x^2+2x+1-x+2x-1}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}\)
\(A=\frac{4x}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}=\frac{10}{x-1}\)
a) \(\left(x-10\right)^2-x\left(x+80\right)\)
\(=x^2-20x+100-x^2-80x\)
\(=-100x+100\)
Thay x=0,98...................................................
b) tương tự phần a
c)\(4x^2-28x+49\)
=\(\left(2x\right)^2-2.2x.7+7^2\)
=(2x-7)2
d) cũng là hằng đăgr thức
a)\(\left(x-10\right)^2-x\cdot\left(x+80\right)\)với x = 0,98
=\(x^2-2\cdot x\cdot10+10^2\)\(-x^2-80x\)
=\(x^2-20x+100-x^2-80x\)
=\(-100x+100\)
=\(-100\cdot0,98+100\)
=\(2\)
b)\(\left(2x+9\right)^2-x\cdot\left(4x+31\right)\)với x=-16,2
=\(\left(2x\right)^2+2\cdot2x\cdot9+9^2-4x^2-31x\)
=\(4x^2+36x+81-4x^2-31x\)
=\(5x+81\)
=\(5\cdot\left(-16,2\right)+81\)
=\(0\)
c)\(4x^2-28x+49\)với x=4
=\(\left(2x\right)^2-2\cdot2x\cdot7+7^2\)
=\(\left(2x-7\right)^2\)
=\(\left(2\cdot4-7\right)^2\)
=\(1\)
Sorry câu d mình không biết
a) \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)
b) \(A=-3\Rightarrow\dfrac{1}{x+5}=-3\)
\(\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}-5=\dfrac{-16}{3}\)
\(9x^2-42x+49=\left(3x-7\right)^2=\left(3.\dfrac{-16}{3}-7\right)^2=\left(-23\right)^2=529\) \(\left(x=\dfrac{-16}{3}\right)\)