K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)

\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 19 số hạng )

\(A>\frac{19}{20}\)

13 tháng 4 2021

Ta có:

\(\dfrac{1}{20^2}< \dfrac{1}{20\cdot19}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\dfrac{1}{21^2}< \dfrac{1}{20\cdot21}=\dfrac{1}{20}-\dfrac{1}{21}\)

\(...\)

\(\dfrac{1}{30^2}< \dfrac{1}{29\cdot30}=\dfrac{1}{29}-\dfrac{1}{30}\)

\(\Rightarrow A< \dfrac{1}{19}-\dfrac{1}{30}< \dfrac{1}{19}\)

6 tháng 4 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)

Vậy ................

6 tháng 4 2018

Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có : 

\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên : 

\(A>19.\frac{1}{20}=\frac{19}{20}\)

Vậy \(A>\frac{19}{20}\)

Chúc bạn học tốt ~ 

8 tháng 5 2016

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)

=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)

=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)  

Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20

6 tháng 5 2021

bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ

5 tháng 5 2019

Tính ra M to lắm bạn ơi so sánh với 1 đời nào

5 tháng 5 2019

\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{100.101.102}\)

\(\Rightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)

\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{100.101}-\frac{1}{101.102}\)

\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{101.102}\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=1-\frac{1}{202.102}< 1\)

Vậy M < 1