Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì chu vi của tam giác ABC là 24 cm nên a+b+c=24 (1)
các cạnh a,b,c tỉ lệ với 3,4,5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)(2)
từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow a=2.3=6;b=2.4=8;c=2.5=10\)
vậy độ dài các cạnh của tam giác ABC lần lượt là 6cm, 8cm , 10cm
b) ta có
\(10^2=100\)
\(6^2+8^2=36+64=100\)
\(\Rightarrow10^2=6^2+8^2\)
suy ra tam giác ABC là tam giác vuông (theo định lý py-ta-go)
A B C M
a) ta có: \(AB^2+AC^2=24^2+32^2=40^2=BC^2\)
=> theo Pitago đảo thì tam giác ABC vuông tại A
b) Ta có: MC=AC-AM=32-7=25
\(\Delta ABM\)vuông tại A có: \(AM^2+AB^2=MB^2\)=> MB=\(\sqrt{AM^2+AB^2}=\sqrt{7^2+24^2}=25\)
Do đó: MB=MC => \(\Delta MBC\)cân tại M
=> \(\widehat{MBC}=\widehat{MCB}\)
Mặt khác \(\widehat{AMB}\)là góc ngoài \(\Delta MBC\)nên: \(\widehat{AMB}\)=\(\widehat{MBC}+\widehat{MCB}=2\widehat{MCB}\)(ĐPCM)
A B C M 1 24 7 40
a) xét tam giác ABC có : AB2 + AC2 = 242 + 322 = 1600 hay BC2 = 1600 ;
vậy AB2 + AC2 = BC2
Suy ra : tam giác ABC vuông tại A ( định lí Py-ta-go đảo )
b) Áp dụng định lí Py-ta-go vào tam giác vuông AMB ta có :
BM2 = AB2 + AM2 = 242 + 72 = 625 \(\Rightarrow\)BM = \(\sqrt{625}=25\)
Mà MC = AC - AM = 32 - 7 = 25 . Vậy MB = MC suy ra : tam giác MBC cân tại M
\(\Rightarrow\)\(\widehat{B_1}=\widehat{C}\)
\(\widehat{AMB}=\widehat{B_1}+\widehat{C}\)( tính chất góc ngoài của tam giác MBC ) hay \(\widehat{AMB}=2\widehat{C}\)
ai đi qua đây tick cho mình 1 tick thì người đó cả năm may mắn kiếm được rất nhiều ****
chúc mọi người một năm mới tốt lành xin cảm oqn rất nhiều.....nhiều.
Ta có:
24^2+32^2=1600
40^2=1600
=>24^2+32^2=40^2
=>Tam giác đó là tam giác vuông(Theo định lí talet đảo)
Giả sử AB=24
AC=32
BC=40
Ta có:40^2=1600
24^2=576
32^2=1034
=>Ta đc:1600=576+1034
=>BC^2=AB^2+AC^2
=>tam giác này là tam giác vuông