Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(b^2=ac.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+b^2+ab}{b^2+c^2+bc}.\)
\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2+ab}{b^2+c^2+bc}\left(đpcm\right).\)
Mình nghĩ là chứng minh như thế mới đúng.
Chúc bạn học tốt!
Cách 1 :\(\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2}=\frac{ac}{bd}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)
Từ (1) và (2),ta có đpcm.
Cách 2 : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì a = bk ; c = dk.Ta có :
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(1\right)\); \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2),ta có đpcm.
Sorry !Mình chỉ biết 2 cách thôi !
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)