Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nên mình sửa chút , 214 chứ không phải 2014 .
(x-214)/86 + (x-132)/84 + (x-54)/82 = 6
- (x-214)/86 + (x-132)/84 + (x-54)/82 - 6 =0
- (x-214)/86 - 1 + (x-132)/84 -2 +(x-54)/82 - 3 =0
- (x-300)/86 + (x-300)/84 +(x-300)/82 =0
- (x - 300 )(1/86 +1/84 +1/82 )=0
- x - 300=0
- x =300 vì 1/86 +1/84 +1/82 khác 0.
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
\(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=\left(x^2-2x+2x-4\right)-\left(x^2+x-3x-3\right)\)
\(=x^2-2x+2x-4-x^2-x+3x+3\)
\(=x^2-x^2-2x+2x+3x-4+3\)
\(=3x-1\)
Chúc bạn học tốt!!!
gọi x là số cần tìm(\(x\in Z\))
theo đề bài, ta có phương trình:
\(x-\dfrac{3x}{5}-\dfrac{4}{5}\left(x-\dfrac{3x}{5}\right)+\dfrac{\left(x-\dfrac{3x}{5}-\dfrac{4}{5}\left(x-\dfrac{3x}{5}\right)\right)}{5}=1,2\)
giải phương trình trên, ta được x=12,5
kiểm tra xem x=12,5 thõa mãn các điều kiện của ẩn. Vậy số cần tìm là 12,5
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
a) Ta có: \(x^2-3=0\)
nên \(x^2=3\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
b) Ta có: \(4x^2-9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\left(x+2\right)^2-\left(x-2\right)^2=5\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4=5\)
\(\Leftrightarrow8x=5\)
hay \(x=\dfrac{5}{8}\)
d) Ta có: \(\left(x+2\right)^3-x^3+6x^2=7\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-7=0\)
\(\Leftrightarrow12x^2+12x+1=0\)
\(\Delta=12^2-4\cdot12\cdot1=144-48=96\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-12-4\sqrt{6}}{24}=\dfrac{-3-\sqrt{6}}{6}\\x_2=\dfrac{-12+4\sqrt{6}}{24}=\dfrac{-3+\sqrt{6}}{6}\end{matrix}\right.\)
e) Ta có: \(\left(x-2\right)^2-\left(x-1\right)\left(x+1\right)=7\)
\(\Leftrightarrow x^2-4x+4-x^2+1=7\)
\(\Leftrightarrow-4x=2\)
hay \(x=-\dfrac{1}{2}\)