Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d
\(\frac{a}{b}<\frac{c}{d}\) \(\Leftrightarrow\) a.d < b.c
Quy đồng mẫu số ta được:
\(\frac{2014a+c}{2014b+d}=\frac{d.\left(2014a+c\right)}{d.\left(2014b+d\right)}=\frac{2014ad+cd}{2014bd+d^2}\)
và \(\frac{c}{d}=\frac{\left(2014b+d\right).c}{\left(2014b+d\right).d}=\frac{2014bc+cd}{2014bd+d^2}\)
Do a.b < c.d suy ra 2014ad + cd < 2014bc + cd .
Vậy \(\frac{2014a+c}{2014b+d}<\frac{c}{d}\) (điều phải chứng minh)
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)