K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)

2, ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

21 tháng 3 2022

\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)

\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)

\(\Leftrightarrow12x+8-18x+12=45\)

\(\Leftrightarrow12x-18x=45-12-8\)

\(\Leftrightarrow-6x=25\)

\(\Leftrightarrow x=\dfrac{-25}{6}\)

Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)

\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)

\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)

\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)

\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)

\(\Leftrightarrow-2x^2-10x=0\)

\(\Leftrightarrow-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;5\right\}\)

28 tháng 9 2019

1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x=t\)

\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)

\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)

Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)

\(\Delta=7^2-4.11=5\)

\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)

28 tháng 9 2019

2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)

\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(x^2-8x=t\)

\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)

\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)

Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)

\(\Delta=\left(-8\right)^2-4.11=20\)

\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)

6 tháng 8 2018

\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=4x\left(x^2-9\right)-x^3+27\)

\(=4x^3-36x-x^3+27\)

\(=3x^3-36x+27\)

6 tháng 8 2018

\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)

\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)

\(=\left(x+6\right).0\)

\(=0\)