K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2022

a)Xét (O) có:

góc PDA và góc PIA là 2 góc có đỉnh nằm trong đường tròn

=>góc PDA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{BM}}{2}\),góc PIA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{MC}}{2}\)

mà \(\stackrel\frown{BM}=\stackrel\frown{MC}\)(M là điểm chính giữa)

=> góc PDA = góc PIA

Xét tứ giác AIDP có

 2 đỉnh D và I kề nhau cùng nhìn cạnh AP

góc PDA = góc PIA (cmt)

=>AIDP là tứ giác nội tiếp (dhnb)

b)Xét (O) có

 PAB và PCB là 2 góc nội tiếp cùng chắn cung BP

=> góc PAB = góc PCB

mà góc PAB = góc PID ( tứ giác AIDP nội tiếp)

=> góc PCB= góc PID

=>ID//BC

c)CMTT câu trên ta được IE//BC

Mà ID//BC

=>IE trùng với ID(tiên đề ơ clit)

=> 3 ddierm D,I,E thẳng hàng

7 tháng 5 2019

A B C D I M E x y

a)   Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên  AE là phân giác góc BAC

Khi đó AE và AD đều là phân giác trong của góc BAC

=> 3 điểm A,E,D thẳng hàng

b)   Có:       ACB+BCx   =180

           => 1/2 ACB  +1/2  BCx =90

           =>  DCB  +   BCE  =90

           =>  DCE                =90

Tương tự  : DBE    =90

Trong tứ giác  BECD   CÓ   DBE +DCE  =90+90=180 

=> TỨ giác BECD nội tiếp

c) theo câu b thì tứ giác BECD nội tiếp nên

  DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)

Xét tam giác DIC và tam giác BIE có :

    DCB=DEB (cmt)

   DIC= BIE ( 2 góc đối đỉnh)

=> tam giác DIC đồng dạng với tam giác BIE

=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)

 => BI *IC= ID*IE

            

9 tháng 5 2019

mình ghi lại câu a nhé

Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A 

=> AE là  phân giác góc A

Vì D  là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC

=> D thuộc đường phân giác góc A

=>AE,AD nhau

=> A,E,D thẳng hàng

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3