Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
a ) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5\)
\(=2,5\)
b ) \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
\(=\dfrac{3}{7}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)\)
\(=\dfrac{3}{7}\left(19-33\right)\)
\(=\dfrac{3}{7}\left(-14\right)\)
\(=-6\)
c ) \(9\left(-\dfrac{1}{3}\right)^3+\dfrac{1}{3}\)
\(=9\left(-\dfrac{1}{27}\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
\(=0\)
d ) \(15\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)\)
\(=\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\div\left(-\dfrac{5}{7}\right)\)
\(=-10\left(-\dfrac{7}{5}\right)\)
\(=14\)
Toàn câu dễ nên bạn tự làm đi.
Trong lúc bạn đánh xong bài này thì bạn có thể làm xong rồi đó.
Đừng có ỷ lại vào người khác ,động não lên.
a/ \(19\dfrac{1}{3}.\dfrac{3}{7}-33\dfrac{1}{3}\)
\(=\dfrac{58}{3}.\dfrac{3}{7}-\dfrac{100}{3}\)
\(=\dfrac{58}{7}-\dfrac{100}{3}\)
\(=\dfrac{-526}{21}\)
b/ \(9.\left(\dfrac{-1}{2}\right)^2+\dfrac{1}{3}\)
\(=9.\dfrac{1}{4}+\dfrac{1}{3}\)
\(=\dfrac{9}{4}+\dfrac{1}{3}=\dfrac{31}{12}\)
c/ \(15\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)\)
\(=\dfrac{61}{4}:\left(-\dfrac{5}{7}\right)-\dfrac{101}{4}:\left(-\dfrac{5}{7}\right)\)
\(=\left(-\dfrac{427}{20}\right)-\left(-\dfrac{707}{20}\right)\)
\(=14\)
a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)
= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)
= 0 + \(\dfrac{11}{125}\)
= \(\dfrac{11}{125}\)
b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +
\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4
= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4
= -1
c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)
= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)
= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)
= \(\dfrac{-7}{75}\)
d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)
= 1 + (-1)
= 0
a. \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2,5\)
b. \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
\(=\dfrac{3}{7}.\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)\)
\(=\dfrac{3}{7}.\left(-14\right)=-6\)
c. \(15\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}:\left(\dfrac{-5}{7}\right)\)
\(=\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right):\left(-\dfrac{5}{7}\right)\)
\(=-10:\left(-\dfrac{5}{7}\right)\)
\(=14\)
d. \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(\dfrac{-1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\dfrac{-5}{21}:\dfrac{4}{5}+\dfrac{5}{21}:\dfrac{4}{5}\)
\(=\left(\dfrac{-5}{7}+\dfrac{5}{7}\right):\dfrac{4}{5}\)
\(=0:\dfrac{4}{5}\)
\(=0\)
a,
\(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5\)
\(=1+1-0,5=1,5\)
b,
\(\dfrac{3}{7}\cdot19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
\(=\dfrac{3}{7}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{3}{7}.\left(-14\right)=-6\)
c,
\(15\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)\)
\(=\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right):\left(-\dfrac{5}{7}\right)=-10:\left(-\dfrac{5}{7}\right)=14\)
d,
\(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{2}{3}+\dfrac{3}{7}+\dfrac{-1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\left[\left(-\dfrac{2}{3}+\dfrac{-1}{3}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\right]:\dfrac{4}{5}\)
\(=\left(-1+1\right):\dfrac{4}{5}=0:\dfrac{4}{5}=0\)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)