Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
\(\left(x+\frac{3}{4}\right)\times\frac{5}{7}=\frac{10}{9}\)
\(\Rightarrow x+\frac{3}{4}=\frac{10}{9}:\frac{5}{7}=\frac{10}{9}\times\frac{7}{5}=\frac{14}{9}\)
\(\Rightarrow x=\frac{14}{9}-\frac{3}{4}=\frac{56-27}{36}=\frac{29}{36}\)
\(\left(x+\frac{3}{4}\right)\times\frac{5}{7}=\frac{10}{9}\)
\(\Leftrightarrow x+\frac{3}{4}=\frac{14}{9}\)
\(\Rightarrow x=\frac{29}{36}\)
P/s tham khảo nha
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại
#)Giải :
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)
\(=0\)
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)
=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)
\(=0\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(d,\left(1-\frac{3}{4}\right)\left(1+\frac{1}{3}\right):\left(1-\frac{1}{3}\right)\)
\(=\frac{1}{4}.\frac{4}{3}.\frac{3}{2}\)
\(=\frac{1}{2}\)