Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
\(\sqrt{6x^2-12x+7}=x^2-2x\)
\(\Leftrightarrow\sqrt{6x^2-12x+7}=\dfrac{6x^2-12x+7-7}{6}\left(1\right)\)
Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t=\dfrac{t^2}{6}-\dfrac{7}{6}\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=7\left(TM\right)\\t=-1\left(loại\right)\end{matrix}\right.\)
t=7\(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x+7=49\)
\(\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\left(TM\right)\\x=1-2\sqrt{2}\left(TM\right)\end{matrix}\right.\)
\(\sqrt{x^2-4x+5}=2x^2-8x\)
\(\Leftrightarrow\sqrt{x^2-4x+5}=2\left(x^2-4x+5\right)-10\)(1)
đặt \(t=\sqrt{x^2-4x+5}\) (t\(\ge\)0)
\(\left(1\right)\Leftrightarrow t=2t^2-10\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(loại\right)\\t=\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4x+5}=\dfrac{5}{2}\)
\(\Leftrightarrow x-4-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{21}}{2}\left(TM\right)\\x=\dfrac{4-\sqrt{21}}{2}\left(TM\right)\end{matrix}\right.\)