Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M L P Q R .
GIẢ SỬ TAM GIÁC PQR LÀ TAM GIÁC ĐỀU
TA CÓ GÓC PRQ = 60
=> GÓC BMC + GÓC ACB = 120
=> GÓC BMC + GÓC \(\frac{ACB}{2}=120\)
=> GÓC BMC = \(120-\frac{ACB}{2}\)
NỐI HM
DO HM LÀ ĐƯỞNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN CỦA TAN GIÁC AHC VUÔNG TAI H
=> MH = AM = MC
=> GÓC HMC = 180 - 2 . GÓC ACB VÀ GÓC MHA = GÓC HAC = 90 - GÓC ACB
=> GÓC BMH = GÓC BMC - GÓC HMC = \(120-\frac{ACB}{2}-180+2.ACB\)
DO GÓC QPR = 60
=> GÓC MHA + GÓC BMH = 120
=> 90 - GÓC ACB + 120 - \(\frac{ACB}{2}-180+2.ACB=120\)
=> 30 + \(\frac{ACB}{2}=120\)
=> GÓC ACB = 90 . 2 = 180 ( VÔ LÍ )
VẬY TAM GIÁC PQR KHÔNG THỂ LÀ TAM GIÁC ĐỀU
A B C H M L P Q R 1 2
Cách 2:
Giả sử \(\Delta\)PQR là tam giác đều \(\Rightarrow\)^QPR=^PRQ=^PQR=600.
Xét \(\Delta\)PHC: ^PHC=900 \(\Rightarrow\)^C2=900-^QPR=300
Do CL là phân giác trong của ^ACB \(\Rightarrow\)^C1=^C2=300\(\Rightarrow\)^ACB=600 (1)
Ta có: ^PRQ=^MRC=600 (Đối đỉnh).
Xét \(\Delta\)RMC: ^RMC=1800-(^MRC+^C1)=1800-900=900 \(\Rightarrow\)RM\(⊥\)AC hay BM\(⊥\)AC
\(\Rightarrow\)BM là đường trung tuyến đồng thời là đường cao của \(\Delta\)ABC\(\Rightarrow\)\(\Delta\)ABC cân tại B (2)
Từ (1) và (2) \(\Rightarrow\)\(\Delta\)ABC đều \(\Rightarrow\)AB=BC=AC (Mâu thuẫn với đề bài)
\(\Rightarrow\)Giả sử là Sai. Vậy nên \(\Delta\)PQR không thể là tam giác đều.
-tự vẽ hình
a) xét tam giác ADB và tam giác AEC, ta có:
AD=AE(gt)
Góc ADB=Góc AEC(gt)
DB=CE(gt)
Vậy tam giác ADB = tam giác AEC (c-g-c)
=> AB=AC(cặp cạnh t/ứng)
=> ABC là tam giác cân tại A
b) Xét tam giác DMB và tam giác ENC, ta có:
DB=CE(gt)
Góc MDB=Góc NEC(gt)
Vậy tam giác DMB = tam giác ENC
=> BM=CN(cặp cạnh t/ứng)
=>góc MBD=góc NCE(cặp góc t/ứng)
c) ta thấy: góc MBD=góc CBI(đối đỉnh)
góc NCE=góc BCI(đối đỉnh)
=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I
d) Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(cmt)
BI=IC(tam giác IBC cân tại I)
AI là cạnh chung
Vậy tam giác BAI = tam giác CAI
=> góc BAI=IAC(cặp góc t/ứng)
=> AI là tia phân giác của BAC(đpcm)