Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge1\)
Đặt\(\left\{{}\begin{matrix}\sqrt{x+4}=a\\\sqrt{x-1}=b\end{matrix}\right.\)\(\left(a\ge\sqrt{5},b\ge0\right)\)
\(\Rightarrow a^2-b^2=5\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=5\)(1)
Mặt khác,\(PT\Leftrightarrow\)\(\left(a-b\right)\left(ab+1\right)=5\)(2)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow\) \(\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a=1\left(l\right)\\b=1\left(tm\right)\end{matrix}\right.\)
Đến đây không biết giải tiếp, anh lo nhé :D
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
\(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{4-x}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+ab=5\\a^2+b^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b+2ab=10\\a^2+b^2=5\end{cases}}\)
\(\Rightarrow\left(a+b\right)^2+2\left(a+b\right)=15\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=3\\a+b=-5\end{cases}}\)