Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Loại bỏ dấu căn bằng cách lũy thừa mỗi vế lên = cơ số của dấu căn.
\(x=\frac{1+i\sqrt{5}}{3};\frac{1-i\sqrt{5}}{3}\)
đk: \(\forall x\inℝ\)
Ta có: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)
\(\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
a) điều kiện xác định : \(x\ge1\)
ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm
b) điều kiện xác định \(x\ge3\)
ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)
\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm
c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)
ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)
b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)
\(\Leftrightarrow5x^2-7x+6=0\)
hay \(x\in\varnothing\)
c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)
=>3x^2-5x+2=0
=>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
\(x^2+4x-7=\left(x+4\right)\sqrt{x^2-7}\)(ĐKXĐ;: \(x\ge\sqrt{7}\)hoặc \(x\le-\sqrt{7}\))
\(\Leftrightarrow x^2+4x-7=x\sqrt{x^2-7}+4\sqrt{x^2-7}\)
\(\Leftrightarrow\left(x^2-7-x\sqrt{x^2-7}\right)+\left(4x-4\sqrt{x^2-7}\right)=0\)
\(\Leftrightarrow\sqrt{x^2-7}\left(\sqrt{x^2-7}-x\right)-4\left(\sqrt{x^2-7}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2-7}-4\right)\left(\sqrt{x^2-7}-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}-4=0\\\sqrt{x^2-7}-x=0\end{cases}}\)
- Nếu \(\sqrt{x^2-7}-4=0\Leftrightarrow x^2-7=16\Leftrightarrow x^2=23\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{23}\\x=\sqrt{23}\end{cases}}\)(thoả mãn)
- Nếu \(\sqrt{x^2-7}-x=0\Leftrightarrow x^2-7=x^2\Leftrightarrow-7=0\)(Vô lí)
Vậy tập nghiệm của phương trình : \(S=\left\{-\sqrt{23};\sqrt{23}\right\}\)
Điều kiện x >= 1 hoặc x <= - 1
Với x <= - 1 thì không có nghiệm
=> x >= 1
12x/√(x^2 - 1) = 35 - 12x
Thêm điều kiện bình phương 2 vế rồi đặt nhân tử chung (3x - 5)(4x - 5)(...)
b)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
Đk:\(-\sqrt{10}\le x\le\sqrt{10}\)
\(pt\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x-4\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-\left(x-4\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+3=0\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\-2x^2+8x-6=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-3\\-\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=-3\) (thỏa)
c)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+3}}+\sqrt{x+3}-\sqrt{x^2-x+1}-\sqrt{x+1}=0\)
Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x+1}=b;\sqrt{x+3}=c\left(a,b,c>0\right)\)
\(\Leftrightarrow\dfrac{ab}{c}+c-a-b=0\)
\(\Leftrightarrow\dfrac{\left(a-c\right)\left(b-c\right)}{c}=0\)
\(\Leftrightarrow\left(a-c\right)\left(b-c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-c=0\\b-c=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a=c\\b=c\end{matrix}\right.\)
*)Xét \(a=c\)\(\Rightarrow\sqrt{x^2-x+1}=\sqrt{x+3}\)
\(\Rightarrow x^2-x+1=x+3\Rightarrow x=\dfrac{2\pm\sqrt{12}}{2}\) (thỏa)
*)Xét \(b=c\)\(\Rightarrow\sqrt{x+1}=\sqrt{x+3}\)
\(\Rightarrow x+1=x+3\Rightarrow-2=0\) (loại)
Đáng lẽ không giúp đâu vì dài nhưng thôi đành cố gắng vậy :((
`x^2+(4x^2)/(x+2)^2=12(x ne -2)`
`<=>x^2-2.x.(2x)/(x+2)+(4x^2)/(x+2)^2=12-(4x^2)/(x+2)`
`<=>(x-(2x)/(x+2))^2=12-(4x^2)/(x+2)`
`<=>((x^2+2x-2x)/(x+2))^2=12-(4x^2)/(x+2)`
`<=>(x^2/(x+2))^2=12-(4x^2)/(x+2)`
`<=>(x^2/(x+2))^2+6((x^2)/(x+2))-2((x^2)/(x+2))-12=0`
`<=>((x^2)/(x+2))((x^2)/(x+2)+6)-2((x^2)/(x+2)+6)=0`
`<=>((x^2)/(x+2)+6)(x^2/(x+2)-2)=0`
`+)x^2/(x+2)+6=0`
`<=>x^2+6x+12=0`
`<=>(x+3)^2+3=0` vô lý
`+)x^2/(x+2)-2=0`
`<=>x^2-2x-4=0`
`<=>(x-1)^2-5=0`
`<=>x=+-\sqrt{5}+1`
Vậy `S={\sqrt{5}+1,-\sqrt{5}+1}`