K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=4x^2-4x+1+x^3-27-4(x^2-16)

=4x^2-4x+1+x^3-27-4x^2+64

=x^3-4x+38

3 tháng 5 2017

a. (3x-4)2=9(x-1)(x+1)

<=> 9x2-24x+16=9x2-9

<=> -24x=-25

<=> x=\(\dfrac{25}{24}\)

Vậy S=\(\left\{\dfrac{25}{24}\right\}\)

b. (4x-5)2-4(x-2)2=0

<=> (4x-5)2-(2x-4)2=0

<=> (4x-5-2x+4)(4x-5+2x-4)=0

<=> (2x-1)(6x-9)=0

<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)

3 tháng 5 2017

c. |x2-x|= -2x

Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

=> x2-x= -2x

<=> x2-x+2x=0

<=> x2+x=0

<=> x(x+1)=0

<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

=> x-x2= -2x

<=> x-x2+2x=0

<=> 3x-x2=0

<=> x(3-x)=0

x=0 (thỏa mãn điều kiện x<1)

hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

Vậy S=\(\left\{0\right\}\)

d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

ĐKXĐ: \(x\ne\pm3\)

Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

=> x2+6x+9-48x3=x2-6x+9

<=> 12x-48x3=0

<=> 12x(1-4x2)=0

<=> 12x(1-2x)(1+2x)=0

<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{0;\pm0,5\right\}\)

4 tháng 5 2017

a ) ( 3x - 4 )2 = 9 (x-1)(x+1)

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9

\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16

\(\Leftrightarrow\) -24x = -24

\(\Leftrightarrow\) x = 1

Vậy phương trình có nghiệm x = 1 .

a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)

\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)

\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)

Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)

\(x^2+14x+45-x^2-17x-30=x^2-25\)

\(-3x+15-x^2+25=0\)

\(-3x-x^2+40=0\)( giải delta ta đc )

\(x_1=-5;x_2=8\)

b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)

\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)

\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)

c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)

\(x^2+6x+9-10\ge x^2+5x+6-4\)

\(x-3\ge0\Leftrightarrow x\ge3\)

24 tháng 7 2020

a) \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\); ĐKXĐ: x # -2; x # +-5

<=> \(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+2}\)

<=> \(\frac{\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}\)

<=> (x + 9)(x + 5) - (x + 15)(x + 2) = (x - 5)(x + 5)

<=> -3x + 15 = x^2 - 25

<=> -3x + 15 - x^2 + 25 = 0

<=> -3x + 40 - x^2 = 0

<=> x^2 + 3x - 40 = 0

<=> (x - 5)(x + 8) = 0

<=> x - 5 = 0 hoặc x + 8 = 0

<=> x = 5 (ktm0 hoặc x = -8 (tm)

b) \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1\); ĐKXĐ: x # 1/3; x # 1

<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{x\left(3x-1\right)-\left(3x-1\right)}=1\)

<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=1\)

<=> \(\frac{x-1}{\left(x-1\right)\left(3x-1\right)}+\frac{2\left(x+1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}\)

<=> x - 1 + 2(x + 1)(3x - 1) - 3x^2 + 1 = (x - 1)(3x - 1)

<=> 5x - 4 + 3x^2 = 3x^2 - 4x + 1

<=> 5x - 4 = -4x + 1

<=> 5x + 4x = 1 + 4

<=> 9x = 5

<=> x = 5/9 (tm)

c) (x + 3)^2 - 10 >= (x + 3)(x + 2) - 4

<=> x^2 + 3x + 3x + 9 - 10 >=  x^2 + 2x + 3x + 6 - 4

<=> x^2 + 6x + 9 - 10 >= x^2 + 5x + 6 - 4

<=> x^2 + 6x - 1 >= x^2 + 5x + 2

<=> x^2 + 6x - 1 - x^2 - 5x - 2 >= 0

<=> x - 3 >= 0

<=> x >= 3

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
31 tháng 5 2018

3) \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

S=\(\left\{6;1\right\}\)

\(\)

4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

5 tháng 3 2018

a) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy .................

b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...............

c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

P/s: tới đây bn tự giải tiếp nha