Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
\(\sqrt[3]{x^2}+\sqrt[3]{x+1}=\sqrt[3]{x}+\sqrt[3]{x^2+x}\)
\(\Leftrightarrow\sqrt[3]{x^2}-1+\sqrt[3]{x+1}-\sqrt[3]{2}=\sqrt[3]{x}-1+\sqrt[3]{x^2+x}-\sqrt[3]{2}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x+1-2}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}=\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}+\frac{x^2+x-2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x-1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{\left(x-1\right)\left(x+2\right)}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{x+2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\right)=0\)
Suy ra x=1. pt kia chịu :v nghiệm lẻ quá
Thắng Nguyễn đúng là thánh troll
đặt \(\sqrt[3]{x}=a;\sqrt[3]{x+1}=b\)
pt trở thành:
a2+b=a+ab
<=>a(a-1)-b(a-1)=0
<=>(a-b)(a-1)=0
từ đó thay vào rồi giải tìm x
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
=> \(\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{5-x}.\sqrt{2-x}+5-x=5\)
=> \(\sqrt{3-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)=5\)
=> \(\left(\sqrt{5-x}+\sqrt{2-x}\right)\left(\sqrt{5-x}+\sqrt{3-x}\right)=5\)
=> giải tiếp nhé , mình biết lớp 10
Dùng phương pháp đánh giá để giải phương trình này em nhé.
\(x\) + \(\sqrt{3+\sqrt{x}}\) = 3 (đk \(x\ge0\))
Với \(x\) = 1 ta có:
\(x\) + \(\sqrt{3+\sqrt{x}}\) = 1+ \(\sqrt{3+\sqrt{1}}\) = 1+ \(\sqrt{4}\) =1 + 2 = 3(thỏamãn)
Với 0\(\le\) \(x\) < 1 ta có:
0 ≤ \(\sqrt{x}\) < 1
⇒ \(\sqrt{3}\) ≤ \(\sqrt{3+\sqrt{x}}\) < \(\sqrt{3+1}\)
⇒ \(\sqrt{3}\) \(\le\) \(\sqrt{3+\sqrt{x}}\) < 2
0 ≤ \(x\) < 1
Cộng vế với vế ta có:
\(\sqrt{3}\) ≤ \(x\) + \(\sqrt{3+\sqrt{x}}\) < 3 (loại)
Với \(x\) > 1 ta có: \(\sqrt{x}\) > 1
⇒ \(\sqrt{3+\sqrt{x}}\) > \(\sqrt{3+1}\) > 2
\(x\) > 1
Cộng vế với vế ta có: \(x\) + \(\sqrt{3+\sqrt{x}}\) > 2 + 1 = 3 (loại)
Vậy \(x\) = 1 là nghiệm duy nhất thỏa mãn phương trình
Kết luận: Phương trình có nghiệm duy nhất là \(x\) = 1