K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

Dùng phương pháp đánh giá để giải phương trình này em nhé.

\(x\) + \(\sqrt{3+\sqrt{x}}\) = 3 (đk \(x\ge0\))

Với \(x\) = 1 ta có: 

\(x\) + \(\sqrt{3+\sqrt{x}}\) = 1+ \(\sqrt{3+\sqrt{1}}\)  = 1+ \(\sqrt{4}\) =1 + 2 = 3(thỏamãn)

Với 0\(\le\) \(x\) < 1 ta có:

    0  ≤ \(\sqrt{x}\) < 1 

   ⇒  \(\sqrt{3}\) ≤ \(\sqrt{3+\sqrt{x}}\) < \(\sqrt{3+1}\)

  ⇒   \(\sqrt{3}\) \(\le\) \(\sqrt{3+\sqrt{x}}\) < 2

        0     ≤  \(x\) < 1

Cộng vế với vế ta có:

        \(\sqrt{3}\)  ≤ \(x\) + \(\sqrt{3+\sqrt{x}}\)  < 3 (loại)

Với \(x\) > 1 ta có: \(\sqrt{x}\) > 1 

⇒ \(\sqrt{3+\sqrt{x}}\) > \(\sqrt{3+1}\) > 2

                \(x\) > 1

Cộng vế với vế ta có: \(x\) + \(\sqrt{3+\sqrt{x}}\) > 2 + 1 = 3 (loại)

Vậy \(x\) = 1 là nghiệm duy nhất thỏa mãn phương trình

Kết luận: Phương trình có nghiệm  duy nhất là \(x\) = 1

 

   

 

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

21 tháng 10 2018

a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)

\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-4x+1=x+1\)

\(\Leftrightarrow x^2-4x-x=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện

Vậy x=0 hoặc x=5

2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)

Đk: x>=3 hoặc x=1

pt  (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )

<=> x-1=0

<=> x=1 ( thỏa mãn điều kiện)

7 tháng 7 2017

\(\sqrt[3]{x^2}+\sqrt[3]{x+1}=\sqrt[3]{x}+\sqrt[3]{x^2+x}\)

\(\Leftrightarrow\sqrt[3]{x^2}-1+\sqrt[3]{x+1}-\sqrt[3]{2}=\sqrt[3]{x}-1+\sqrt[3]{x^2+x}-\sqrt[3]{2}\)

\(\Leftrightarrow\frac{x^2-1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x+1-2}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}=\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}+\frac{x^2+x-2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x-1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{\left(x-1\right)\left(x+2\right)}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{x+2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\right)=0\)

Suy ra x=1. pt kia chịu :v nghiệm lẻ quá

Thắng Nguyễn đúng là thánh troll

đặt \(\sqrt[3]{x}=a;\sqrt[3]{x+1}=b\)

pt trở thành:

a2+b=a+ab

<=>a(a-1)-b(a-1)=0

<=>(a-b)(a-1)=0

từ đó thay vào rồi giải tìm x

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

4 tháng 11 2015

=> \(\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{5-x}.\sqrt{2-x}+5-x=5\)

=> \(\sqrt{3-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)=5\)

=> \(\left(\sqrt{5-x}+\sqrt{2-x}\right)\left(\sqrt{5-x}+\sqrt{3-x}\right)=5\)

=> giải tiếp nhé , mình biết lớp 10