K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2022

\(\sqrt{x^2}=7\Rightarrow\left|x\right|=7\Rightarrow x=\pm7\)

24 tháng 8 2022

x=7

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

18 tháng 9 2018

\(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)

\(\Leftrightarrow\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}-\sqrt{x-\frac{7}{x^2}}=x-\sqrt{x-\frac{7}{x^2}}\)

\(\Leftrightarrow\left(\sqrt{x^2-\frac{7}{x^2}}\right)^2=\left(x-\sqrt{x-\frac{7}{x^2}}\right)^2\)

\(\Leftrightarrow x^2-\frac{7}{x^2}=x^2-2\sqrt{x-\frac{7}{x^2}}.x+x-\frac{7}{x^2}\)

\(\Leftrightarrow2\sqrt{x-\frac{7}{x^2}}.x-x=0\)

\(\Leftrightarrow x\left(2\sqrt{x-\frac{7}{x^2}}-1=0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

=> x = 2

23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x\ge-3\\x\ge-4\\x\ge-7\end{matrix}\right.\Leftrightarrow}x\ge-2\)

\(\sqrt{x+2}-\sqrt{x+3}=\sqrt{x+4}-\sqrt{x+7}\)

\(\Leftrightarrow x+2-2\sqrt{\left(x+2\right)\left(x+3\right)}+x+3=x+4-2\sqrt{\left(x+4\right)\left(x+7\right)}+x+7\)

\(\Leftrightarrow-2\sqrt{\left(x+2\right)\left(x+3\right)}+2\sqrt{\left(x+4\right)\left(x+7\right)}=6\)

\(\Leftrightarrow2\left[\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}\right]=6\)

\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}=3\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}+\left(x+2\right)\left(x+3\right)=9\)

\(\Leftrightarrow-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=-2x^2-16x-8\)

\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=x^2+8x+4\)

Có lẽ làm sai ở đâu đó, mk lười :V

NV
23 tháng 10 2020

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x+7}=\sqrt{x+3}+\sqrt{x+4}\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x+14}=2x+7+2\sqrt{x^2+7x+12}=0\)

\(\Leftrightarrow\sqrt{x^2+9x+14}+1=\sqrt{x^2+7x+12}\)

\(\Leftrightarrow x^2+9x+15+2\sqrt{x^2+9x+14}=x^2+7x+12\)

\(\Leftrightarrow2\sqrt{x^2+9x+14}=-2x-3\) (\(x\le-\frac{3}{2}\))

\(\Leftrightarrow4\left(x^2+9x+14\right)=4x^2+12x+9\)

\(\Leftrightarrow24x=-47\)

\(\Leftrightarrow x=-\frac{47}{24}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 1:

ĐKXĐ: $-2\leq x\leq 2$

Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$

Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)

\(\Rightarrow (2-ab)^2-2ab=4\)

\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)

Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$

$\Rightarrow x=2$

Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)

Vậy $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 2:

ĐK: $x\geq \frac{-1}{3}

PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)

\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)

Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$

Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$

$\Rightarrow x+3=4(3x+1)$

$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)

Vậy..........

7 tháng 10 2020

Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:

\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)

hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)

\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)

\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)

\(t+1+t+3=14\)

\(2t+4=14\)

2t=10

t=5

Từ đó \(x=\frac{25+5}{2}=15\)

8 tháng 10 2020

có một chút thiếu sót và sai nha ! cảm ơn bnaj đã tả lời câu hỏi này !

7 tháng 4 2019

Các bạn thử dùng bất đẳng thức

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

NV
7 tháng 4 2019

\(2\le x\le7\)

\(x^2+7x-30+2-\sqrt{7-x}+1-\sqrt{x-2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+10\right)+\frac{x-3}{2+\sqrt{7-x}}-\frac{x-3}{1+\sqrt{x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+10+\frac{1}{2+\sqrt{7-x}}-\frac{1}{1+\sqrt{x-2}}\right)=0\)

\(\Rightarrow x=3\)

// Ta có \(2\le x\le7\Rightarrow\frac{1}{1+\sqrt{x-2}}< 1\Rightarrow x+10-\frac{1}{1+\sqrt{x-2}}>0\) nên ngoặc phía sau luôn dương

25 tháng 4 2019

Ta có: \(\sqrt{2-x}-1+\sqrt{x}-1+5\left(\sqrt{2x-x^2}-1\right)=0\)(ĐK: \(0\le x\le2\))

    <=> \(\frac{-x+1}{\sqrt{2-x}+1}+\frac{x-1}{\sqrt{x}+1}+5\left(\frac{-x^2+2x-1}{\sqrt{2x-x^2}+1}\right)=0\)

    <=>  \(\left(x-1\right)\left(\frac{-1}{\sqrt{2-x}+1}+\frac{1}{\sqrt{x}+1}+\frac{-5\left(x-1\right)}{\sqrt{2x-x^2}+1}\right)=0\)

     Vì \(\frac{-1}{\sqrt{2-x}+1}+\frac{1}{\sqrt{x}+1}+\frac{-5\left(x-1\right)}{\sqrt{2x-x^2}+1}\)khác 0 với mọi \(0\le x\le2\)

      => x=1 ( Thoả mãn)

     Vậy pt có nghiệm duy nhất là x=1