Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...............
c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
P/s: tới đây bn tự giải tiếp nha
Mình giải từ cuối lên , mình giải dần -)
n, <=> x(2x-1)-3(2x-1)=0
<=> (x-3)(2x-1)=0
<=> x= 3 hoặc x= 1/2
m, <=> (x+2)(x2-3x+5)-x2(x+2)=0
<=> (x+2)(x2-3x+5-x2)=0
<=> (x+2)(5-3x)=0
=> x= -2 hoặc5/3
a. (x-1) (x2 +x+1)= x3+x
=>x3 -1=x3 +x
=> x3 -1-x3 =x=>x=-1
b)(3x+2)2 - (2x+3)2=0
(3x+2-2x-3)(3x+2+2x+3)=0
=>(x-1)(5x+5)=0
=>x-1=0 hoặc 5x+5 =0
+nếu x-1=0 thì x=1
+nếu 5x+5 =0 thì 5x=-5 =>x=-1
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
định giải nhưng thôi vì đx nhờ người khác roài
(1)
\(\left\{{}\begin{matrix}\left|x^2-1\right|\ge0\\\left|x-1\right|\ge0\end{matrix}\right.\) => để (1) có nghiệm \(\left\{{}\begin{matrix}x^2-1=0\\x-1=0\end{matrix}\right.\)=> x=1
(2)
tương tự \(\left\{{}\begin{matrix}x^2-1=0\\2x-2=0\\x-1=0\end{matrix}\right.\) => x=1