K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

....

Điểm âm của tớ chỉ còn 29 nữa thôi, các bạn giúp mik nha, khi nào hết âm mik sẽ ra câu hỏi và giúp lại các bạn

Mơn các bạn trc~~~~ Và cx mơn các bạn đã giúp mik trong thời gian qua =DD

21 tháng 2 2018

pt <=> (x^4+x)-(30x^2-30x+30) = 0

<=> x.(x^3+1)-30.(x^2-x+1) = 0

<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0

<=> (x^2-x+1).(x^2+x-30) = 0

<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )

<=> (x^2-5x)+(6x-30) = 0

<=> (x-5).(x+6) = 0

<=> x-5=0 hoặc x+6=0

<=> x=5 hoặc x=-6

Vậy ..............

Tk mk nha

16 tháng 4 2016

      x4-30x2+31x-30=0

<=>x4+x-30x2+30x-30=0

<=>x(x3+1)-30(x2-x+1)=0

<=>x(x+1)(x2-x+1)-30(x2-x+1)=0

<=>(x2-x+1)(x2+x-30)=0

<=>(x2-x+1)(x2-5x+6x-30)=0

<=>(x2-x+1)[x(x-5)+6(x-5)]=0

<=>(x2-x+1)(x-5)(x+6)=0

Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x

Do đó: <=>x-5 =0    <=> x=5

                x+6=0           x=-6

Vậy phương trình có tập nghiệm là S={5;-6}

31 tháng 10 2018

x^4-30x^2+31x-30=0

<=>x^4+x^2+1-31(x^2-x+1)=0

<=>(x^2-x+1)(x^2+x+1)-31(x^2-x+1)=0

<=>(x^2-x+1)(x^2+x-30)=0

<=>(x^2-x+1)(x^2-6x+5x-30)=0

<=>(x^2-x+1)(x-6)(x+5)=0

Ta có:x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0 Với mọi x

<=>(x-6)(x+5)=0

<=>x+5=0<=>x=-5

     x-6=0<=>x=6

Vậy x=(5;-6)

x4−30x2+31x−30

=x4+x−30x2+30x−30

=x(x3+1)−30(x2−x+1)

=x(x+1)(x2−x+1)−30(x2−x+1)

=(x2+x)(x2−x+1)−30(x2−x+1)

=(x2−x+1)(x2+x−30)

tự làm tieeps nhé

25 tháng 9 2018

     \(x^4-30x^2+31x-30=0\)

\(\Rightarrow x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0\)

\(\Rightarrow x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

\(\Rightarrow\left(x-5\right)\left[x^3+6x^2-x^2-6x+x+6\right]=0\)

\(\Rightarrow\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

Mà \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Chúc bạn học tốt.

18 tháng 12 2015

x^4-30x^2+31x-30=0 
<=>(x^4 - 29x^2 + 841/4) - (x^2 - 31x + 31^2/4 ) =0 
<=> (x^2- 29/2)^2 - (x-31/2)^2=0 
(đến đây ta giải phương trình A^2-B^2=0 bằng cách đưa về pt tích (A-B)(A+B)=0 )

tick nha

10 tháng 2 2018

<=>x4+x-30x2+30x-30=0

<=>x(x3+1)-30(x2-x+1)=30

<=>x(x+1)(x2-x+1)-30(x2-x+1)=30

<=>(x2-x+1)(x2+x-30)=0

<=>x2+x-30=0    (do x2-x+1 >0)

<=>(x2-5x)+(6x-30)=0

<=>x(x-5)+6(x-5)=0

<=>(x-5)(x+6)=0

<=> \(\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Vậy ..

10 tháng 2 2018

bạn ơi mấy cái bài này bạn lên coccoc math ban ghi là nó ra kết quả phân tích thành nhân tử

rồi bạn nhân ngược lại là nó ra cách làm .

\(x^4-30x^2+31x-30=0.\)

\(\left(x-5\right)\left(x-6\right)\left(x^2-x-1\right)=0\) ( coccoc math)

\(\left(x^2-x-1\right)=0\)

\(x^2-2x.\frac{1}{2}+\frac{1}{2}-\left(1+\frac{1}{2}\right)=0\)

\(\left(x^2-\frac{1}{2}\right)^2-\frac{3}{2}=0\)

\(\left(x-\frac{1}{2}+\sqrt{\frac{3}{2}}\right)\left(x-\frac{1}{2}-\sqrt{\frac{3}{2}}\right)=0\)

tích = 0  2 th

vậy ....

\(x^4-30x^2+31x-30\)

\(=x^4+x-30x^2+30x-30\)

\(=x\left(x^3+1\right)-30\left(x^2-x+1\right)\)

\(=x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(=\left(x^2+x\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x-30\right)\)

6 tháng 6 2018

\(x^4-30x^2+31x-30\)

\(=x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30\)

\(=x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^3+5x^2-5x+6\right)\)

\(=\left(x-5\right)\left(x^3+6x^2-x^2-6x+x+6\right)\)

\(=\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]\)

\(=\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)\)

14 tháng 12 2016

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-5=0\\x^2-x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=5\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(loai\right)\end{array}\right.\)

Vậy \(S=\left\{-6;5\right\}\)

 

4 tháng 1 2019

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)

Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\forall x\in R\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

Vậy, \(S=\left\{-6;5\right\}\)