K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:

PT $\Leftrightarrow x^2+(x^2y^2-2xy+1)=5$

$\Leftrightarrow x^2+(xy-1)^2=5$

$\Rightarrow x^2=5-(xy-1)^2\leq 5$

Mà $x$ là stn nên $x=0;1;2$

Thay từng giá trị của $x$ vô pt ban đầu ta có $(x,y)=(1,3), (1,-1), (-1, -3), (-1, 1), (2, 0), (-2,0), (2, 1), (-2, -1)$

10 tháng 8 2015

Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x

\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)

\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)

\(\Rightarrow x\in\left\{...\right\}\)

 

23 tháng 11 2020

\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))

TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)

TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)

25 tháng 9 2018

\(x^4+x^2+2=y^2-y\)

\(\Leftrightarrow\left(y-x^2-1\right)\left(y+x^2\right)=2\)