K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Ta có:

$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$

Ta có:

$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$

Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$

22 tháng 7 2019

Gửi bài trên sai chỗ :D

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

29 tháng 3 2017

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

đặt \(x^2+5x+5=t\)

\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

24 tháng 11 2017

\(\sqrt{x-5}+\sqrt{x-3}-2\sqrt{x^2+2x-8}+4=0\left(1\right)\\ \Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-5\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x\ge3\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2+\left(\sqrt{x-3}\right)^2+4^2=\left(2\sqrt{x^2+2x-8}\right)^2\\ \Leftrightarrow x-5+x-3+16=4.\left(x^2+2x-8\right)\\ \Leftrightarrow x-5+x-3+16=4x^2+8x-32\\ \Leftrightarrow x-5+x-3+16-4x^2-8x+32=0\\ \Leftrightarrow-4x^2-6x+40=0\)

Ta có: \(\Delta=b^2-4ac=\left(-6\right)^2-4.\left(-4\right).40=676\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)+\sqrt{676}}{2.\left(-4\right)}=-4\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)-\sqrt{676}}{2.\left(-4\right)}=\dfrac{5}{2}=2,5\left(loại\right)\end{matrix}\right.\)

Vậy phương trình (1) không có nghiệm thỏa mãn.

24 tháng 11 2017

Mình nhầm chỗ \(x_1=-4\) là loại mà mình nhấn nhầm là nhận!

1 tháng 7 2015

1) <=> 1 - sin2x + sin x + 1 = 0 

<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1

+) sin x = 0 <=> x = k\(\pi\)

+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)

2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0 

\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx =  \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)

cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)

cosx =  \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) +  k2\(\pi\)

Vậy....
3) chia cả 2 vế cho 2 ta được:
\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)
<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)
<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)
Vậy....
 
1 tháng 7 2015

1)  Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m

|x2 - 1| = m4 - m2 + 1   

<=> x2 - 1 = m4 - m2 + 1    (1)  hoặc x2 - 1 = - ( m4 - m2 + 1 )    (2)

Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)

Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân  biệt

(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt

(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0 

<=> m \(\ne\) 0 và 1 - m2 > 0 

<=> m \(\ne\) 0  và -1 < m < 1

Vậy với  m \(\ne\) 0  và -1 < m < 1 thì pt đã cho có 4 nghiệm pb