\(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 10 2019

a/ ĐKXĐ: \(0\le x\le4\)

\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)

Đặt \(\sqrt{-x^2+4x}=a\ge0\)

\(-a^2.a-a^2+2=0\)

\(\Leftrightarrow a^3+a^2-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)

b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)

Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)

\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

NV
22 tháng 10 2019

c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)

\(a^3+10-14=2a\)

\(\Leftrightarrow a^3-2a-4=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)

d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)

Đặt \(\sqrt[3]{3x^2+x+4}=a\)

\(2a^3+a-18=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)

\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)

e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)

Đặt \(\sqrt{x^2+5x+2}=a\ge0\)

\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)

Bài cuối xấu quá, chắc nhầm số liệu

4 tháng 2 2020

Viết đề mà ko ai đọc được vậy :v

a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)

\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)

\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy...

4 tháng 2 2020

\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)

<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)

Xét \(\sqrt{x^2+1}+3-x=0\)

<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))

Xét \(\sqrt{x^2+1}+3-x\ne0\)

pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)

<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)

<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)

<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)

pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)

<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))

=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)

<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)

<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))

=>(2) vô nghiệm

Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)

P/s: Hơi dài :)

NV
22 tháng 10 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x^2-2x-3}=a\ge0\Rightarrow x^2-2x=a^2+3\)

\(a^2+3+3a=7\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2-2x-3=1\Rightarrow x^2-2x-4=0\Rightarrow x=...\)

b/ \(\Leftrightarrow x^2-4x+6-\sqrt{x^2-4x+12}=0\)

\(\Leftrightarrow x^2-4x+12-\sqrt{x^2-4x+12}-6=0\)


Đặt \(\sqrt{x^2-4x+12}=a>0\)

\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+12}=3\Rightarrow x^2-4x+3=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ \(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)

Đặt \(\sqrt{x^2+11}=a\)

\(a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+11}=6\Rightarrow x^2+11=36\Rightarrow...\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)

Đặt \(\sqrt{2x^2+4x+1}=a\ge0\Rightarrow2x^2+4x=a^2-1\Rightarrow x^2+2x=\frac{a^2-1}{2}\)

\(\frac{a^2-1}{2}-1+a=0\)

\(\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+1}=1\Rightarrow2x^2+4x=0\Rightarrow...\)

e/

\(\Leftrightarrow x^2+5x+4-5\sqrt{x^2+5x+28}=0\)

Đặt \(\sqrt{x^2+5x+28}=a>0\Rightarrow x^2+5x=a^2-28\)

\(a^2-28+4-5a=0\)

\(\Leftrightarrow a^2-5a-24=0\Rightarrow\left[{}\begin{matrix}a=8\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow...\)

P/s: tất cả các nghiệm sau khi giải ra x chắc chắn đều thỏa mãn

28 tháng 6 2019

\(pt\Leftrightarrow2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x+1\right)\left(x+1\right)^2}=\left(x+1\right)\left(5x^2-8x+8\right)\)\(\Leftrightarrow2\left(x+1\right)\sqrt{x}+\left(x+1\right)\sqrt{3\left(2x+1\right)}-\left(x+1\right)\left(5x^2-8x+8\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\circledast\end{matrix}\right.\)

Giải (*)\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\)

\(\Leftrightarrow2\sqrt{x}-2+\sqrt{3\left(2x+1\right)}-3=5x^2-8x+3\)

\(\Leftrightarrow\frac{4x-4}{2\sqrt{x}+2}+\frac{6x-6}{\sqrt{3\left(2x+1\right)}+3}=\left(x-1\right)\left(5x-3\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3\right)=0\)

x=1

bạn giải nốt cái còn lại nhá

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

NV
1 tháng 10 2019

a/ ĐKXĐ: \(x^2+2x-6\ge0\)

\(\Leftrightarrow x^2+2x-6+\left(x-2\right)\sqrt{x^2+2x-6}=0\)

\(\Leftrightarrow\sqrt{x^2+2x-6}\left(\sqrt{x^2+2x-6}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-6}=0\left(1\right)\\\sqrt{x^2+2x-6}=2-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-6=0\Rightarrow x=-1\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2+2x-6=\left(2-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\6x=10\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{3}\)

NV
1 tháng 10 2019

Câu b nhìn ko ra hướng, ko biết đề có nhầm đâu ko :(

c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x^2+x\right)\left(x^2+x+2\right)}-\left(3-x\right)\sqrt{x^2+x}=0\)

\(\Leftrightarrow\sqrt{x^2+x}\left(\sqrt{x^2+x+2}-3+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\left(1\right)\\\sqrt{x^2+x+2}=3-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)

d/

Ta có \(\sqrt{x^2+3x+4}=\sqrt{\left(x+\frac{3}{4}\right)^2+\frac{7}{4}}>1\)

\(\Rightarrow\sqrt{x^2+3x+4}-1>0\)

Nhân 2 vế của pt với \(\sqrt{x^2+3x+4}-1\)

\(\left(\sqrt{x^2+3x+4}-1\right)\left(x^2+3x+3\right)=3x\left(x^2+3x+3\right)\)

\(\Leftrightarrow\left(x^2+3x+3\right)\left(\sqrt{x^2+3x+4}-1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+3=0\left(vn\right)\\\sqrt{x^2+3x+4}=3x+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x^2+3x+4=\left(3x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow8x^2+3x-3=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{105}}{6}\\x=\frac{-3-\sqrt{105}}{6}\left(l\right)\end{matrix}\right.\)

NV
24 tháng 11 2019

a/ ĐKXĐ: \(-2\le x\le5\)

\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(x+2\right)\left(5-x\right)}-4=0\)

Đặt \(\sqrt{x+2}+\sqrt{5-x}=a>0\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}\)

\(\Rightarrow a+\frac{a^2-7}{2}-4=0\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}=1\)

\(\Leftrightarrow-x^2+3x+10=1\)

\(\Leftrightarrow x^2-3x-9=0\)

b/ \(\Leftrightarrow\sqrt{x+1}-\sqrt{4-x}+2\left(5+2\sqrt{\left(x+1\right)\left(4-x\right)}\right)=17\)

Đặt \(\sqrt{x+1}-\sqrt{4-x}=a\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{5-a^2}{2}\)

\(a+2\left(5+5-a^2\right)=17\)

\(\Leftrightarrow-2a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}-\sqrt{4-x}=-1\\\sqrt{x+1}-\sqrt{4-x}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+1=\sqrt{4-x}\\2\sqrt{x+1}=2\sqrt{4-x}+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2+2\sqrt{x+1}=4-x\\4x+4=25-4x+12\sqrt{4-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1-x\left(x\le1\right)\\12\sqrt{4-x}=8x-21\left(x\ge\frac{21}{8}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\left(1-x\right)^2\\144\left(4-x\right)=\left(8x-21\right)^2\end{matrix}\right.\)

NV
24 tháng 11 2019

c/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

\(a^2-1=3\left(a-1\right)\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-x^2}=\frac{a^2-1}{2}=0\\\sqrt{x-x^2}=\frac{a^2-1}{2}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-x^2=0\\x-x^2=\frac{9}{4}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5+2x}=a\ge0\\\sqrt{5-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}\left(3a-1\right)\left(3b-1\right)=16\\a^2+b^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3ab-\left(a+b\right)=5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3ab-5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\)

\(\Rightarrow\left(3ab-5\right)^2-2ab=10\)

\(\Leftrightarrow9\left(ab\right)^2-32ab+15=0\Rightarrow\left[{}\begin{matrix}ab=3\\ab=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(ab\right)^2=9\\\left(ab\right)^2=\frac{25}{81}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}25-4x^2=9\\25-4x^2=\frac{25}{81}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=\frac{500}{81}\end{matrix}\right.\)

NV
26 tháng 11 2019

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

NV
26 tháng 11 2019

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}